É®≣∲ WNIVERSITY OF HULL

Differential Geometry (661955)

Trimester 1

Silvio Fanzon Email: S.Fanzon@hull.ac.uk

Motivation

Topology and Differential Geometry

- Both deal with the study of shape:
 - Topology from a continuous POV
 - Differential geometry from a differentiable POV
- Are the languages of lots of modern mathematics and physics
 - Functional Analysis (notions of weak convergence)
 - PDEs on manifolds (surfaces)
 - Mechanics of solids
 - General relativity

Module content

Divided in 3 parts:

- Curves
- Surfaces
- General topology

Curves & Surfaces

- Curves are 1D and Surfaces 2D (helix sphere)
- ► Diff Geometry: Study C & S from differentiable POV

Take some derivatives \rightsquigarrow define some scalars: Curvatures

Curvatures measure how much an object deviates from being flat

Example: Gaussian Curvature

Principal Curvatures κ_1, κ_2 : Min and Max curvatures of a surface Gaussian Curvature: $K = \kappa_1 \kappa_2$

Example: Cylinder of radius R

- Min curvature is $\kappa_1 = 0$; Max curvature is $\kappa_1 = 1/R$
- Gaussian curvature is $K = \kappa_1 \kappa_2 = 0$

One of the best Theorems in Differential Geometry (we will study it)

Theorema Egregium: Take a surface

- Bend it in any way
- Don't stretch, shrink or tear it

 \implies Gaussian curvature K stays the same

Example: Piece of Paper is flat \implies Gaussian curvature K = 0

• Bend it \implies 1 direction must stay flat to preserve K = 0 curvature

Important Application

Goal: Eating pizza

- Slice of pizza on plate is flat $\implies K = 0$
- Lift pizza slice \implies one direction stays flat to preserve K = 0
- Bend crust \implies opposite direction flattens to preserve K = 0

More serious Application: Cartography

- Model the Earth with a Sphere of Radius R
- Gaussian curvature of Earth is $K = 1/R^2 \neq 0$
- Gaussian curvature of Piece of Paper is K = 0

Thm Egregium \implies Earth cannot be mapped onto a plane without distorting Angles or Areas

Lambert projection distorts Angles

Mercator projection distorts Areas

Topology

- Study shapes from continuous POV
- 2 shapes are topologically the same:
 - If you can deform one into the other
 - You can bend, stretch, shrink
 - You cannot tear!
- Question: Are the shapes below topologically the same?

Module organization

Teaching: Each week we have

- 2 lectures of 2 hours
- 1 tutorial of 1 hour

Assessment:

- ▶ 4 problem sheets (accounts for 30% of final mark)
- Exam (accounts for 70% of final mark)

Get in touch for more information:

Silvio Fanzon

S.Fanzon@hull.ac.uk