Numbers Sequences and Series

Revision Guide

Dr. Silvio Fanzon

21 Nov 2024

Table of contents

Re	evision Guide	3		
	Recommended revision strategy	3		
	Checklist	3		
1	Preliminaries			
	1.1 Set Theory	4		
	1.2 Relations	6		
	1.3 Induction	8		
	1.4 Absolute value	9		
2	Real Numbers	10		
	2.1 Fields	10		
	2.2 Supremum and infimum	12		
	2.3 Axioms of Real Numbers	13		
	2.3.1 Inductive sets	13		
3	Properties of R			
	3.1 Revisiting Sup and Inf	15		
	3.2 Cardinality	16		
4	Complex Numbers	19		
		20		
	4.2 Fundamental Theorem of Algebra	23		
	4.3 Solving polynomial equations	24		
	4.4 Roots	26		
5	Sequences in \mathbb{R}	28		
	5.1 Limit Tests	33		
	5.2 Monotone sequences	35		
	5.3 Example: Euler's Number	36		
	5.4 Some important limits	37		
Li	cense	41		
	Reuse	41		
	Citation	-		

Revision Guide

Revision Guide document for the module **Numbers Sequences and Series 400297** 2024/25 at the University of Hull. If you have any question or find any typo, please email me at

S.Fanzon@hull.ac.uk

Full lenght Lecture Notes of the module available at

silviofanzon.com/2024-NSS-Notes

Recommended revision strategy

Make sure you are very comfortable with:

- 1. The Definitions, Theorems, Proofs, and Examples contained in this Revision Guide
- 2. The Tutorial and Homework questions
- 3. The 2023/24 Exam Paper questions.
- 4. The Checklist below

Checklist

You should be comfortable with the following topics/taks:

Preliminaries

- Prove that $\sqrt{p} \notin \mathbb{Q}$ for *p* a prime number
- •

Complex Numbers

- Sum, multiplication and division of complex numbers
- Computing the complex conjugate
- Computing the inverse of a complex number
- Find modulus and argument of a complex number
- Compute Cartesian, Trigonometric and Exponential form of a complex number
- Complex exponential and its properties
- Computing powers of complex numbers
- Solving degree 2 polynomial equations in $\mathbb C$
- Long division of polynomials
- Solving higher degree polynomial equations in $\mathbb C$
- Finding the roots of unity
- Finding the n-th roots of a complex number

1 Preliminaries

Theorem 1.1

The number $\sqrt{2}$ does not belong to Q.

Proof

Aassume by contradiction that

$$\sqrt{2} \in \mathbb{Q}. \tag{1.1}$$

1. Therefore, there exists $m, n \in \mathbb{N}$, $n \neq 0$, such that

$$\frac{m}{n} = \sqrt{2}$$

- 2. Withouth loss of generality, we can assume that *m* and *n* have no common factors.
- 3. Square the equation to get

$$\frac{m^2}{n^2} = 2 \quad \Longrightarrow \quad m^2 = 2n^2 \,. \tag{1.2}$$

Therefore the integer m^2 is an even number.

4. Since m^2 is an even number, it follows that also *m* is an even number. Then there exists $p \in \mathbb{N}$ such that

$$m = 2p. \tag{1.3}$$

5. Substitute (1.3) in (1.2) to get

$$m^2 = 2n^2 \implies (2p)^2 = 2n^2 \implies 4p^2 = 2n^2$$

Dividing both terms by 2, we obtain

$$n^2 = 2p^2 \,. \tag{1.4}$$

- 6. We now make a series of observations:
 - Equation (1.4) says that n^2 is even.
 - The same argument in Step 4 guarantees that also *n* is even.
 - Therefore *n* and *m* are both even, meaning they have 2 as common factor.
 - But Step 2 says that *n* and *m* have no common factors. **Contradiction**
- Our reasoning has run into a contradiction, stemming from assumption (1.1). Therefore (1.1) is FALSE, and so

 $\sqrt{2} \notin \mathbb{Q}$

ending the proof.

1.1 Set Theory

Proposition 1.3

Let A and B be sets. Then

$$A = B \iff A \subseteq B \text{ and } B \subseteq A.$$

Definition 1.4

Let Ω be a set, and $A_n \subseteq \Omega$ a family of subsets, where $n \in \mathbb{N}$.

1. The **infinte union** of the A_n is the set

 $\bigcup_{n \in \mathbb{N}} A_n := \{ x \in \Omega : x \in A_n \text{ for at least one } n \in \mathbb{N} \}.$

2. The **infinte intersection** of the A_n is the set

$$\bigcap_{n\in\mathbb{N}}A_n\,:=\{x\in\Omega\,:\,\,x\in A_n\,\,\,\text{for all}\,\,\,n\in\mathbb{N}\}\,.$$

Example 1.5

Question. Define $\Omega := \mathbb{N}$ and a family A_n by

$$A_n = \{n, n+1, n+2, n+3, ...\}, \quad n \in \mathbb{N}.$$

1. Prove that

$$\bigcup_{n\in\mathbb{N}}A_n=\mathbb{N}\,.\tag{1.5}$$

2. Prove that

$$\bigcap_{n \in \mathbb{N}} A_n = \emptyset \,. \tag{1.6}$$

Solution.

1. Assume that $m \in \bigcup_n A_n$. Then $m \in A_n$ for at least one $n \in \mathbb{N}$. Since $A_n \subseteq \mathbb{N}$, we conclude that $m \in \mathbb{N}$. This shows

$$\bigcup_{n\in\mathbb{N}}A_n\subseteq\mathbb{N}.$$

Conversely, suppose that $m \in \mathbb{N}$. By definition $m \in A_m$. Hence there exists at least one index n, n = m in this case, such that $m \in A_n$. Then by definition $m \in \bigcup_{n \in \mathbb{N}} A_n$, showing that

$$\mathbb{N}\subseteq \bigcup_{n\in\mathbb{N}}A_n.$$

This proves (1.5).

2. Suppose that (1.6) is false, i.e.,

$$\bigcap_{n\in\mathbb{N}}A_n\neq\emptyset$$

This means there exists some $m \in \mathbb{N}$ such that $m \in \bigcap_{n \in \mathbb{N}} A_n$. Hence, by definition, $m \in A_n$ for all $n \in \mathbb{N}$. However $m \notin A_{m+1}$, yielding a contradiction. Thus (1.6) holds.

Definition 1.6

Let $A, B \subseteq \Omega$. The **complement** of *A* with respect to *B* is the set of elements of *B* which do not belong to *A*, that is

 $B \setminus A := \{x \in \Omega : x \in B \text{ and } x \notin A\}.$

In particular, the complement of *A* with respect to Ω is denoted by

 $A^c := \Omega \setminus A := \{ x \in \Omega : x \notin A \}.$

Example 1.7

Question. Suppose $A, B \subseteq \Omega$. Prove that

$$A \subseteq B \iff B^c \subseteq A^c.$$

Solution. Let us prove the above claim:

- First implication \implies : Suppose that $A \subseteq B$. We need to show that $B^c \subseteq A^c$. Hence, assume $x \in B^c$. By definition this means that $x \notin B$. Now notice that we cannot have that $x \in A$. Indeed, assume $x \in A$. By assumption we have $A \subseteq B$, hence $x \in B$. But we had assumed $x \in B$, contradiction. Therefore it must be that $x \notin A$. Thus $B^c \subseteq A^c$.
- Second implication ← : Note that, for any set,

$$(A^c)^c = A$$

Hence, by the first implication,

$$B^c \subseteq A^c \implies (A^c)^c \subseteq (B^c)^c \implies A \subseteq B.$$

Proposition 1.8: De Morgan's Laws

Suppose $A, B \subseteq \Omega$. Then

 $(A \cap B)^c = A^c \cup B^c$, $(A \cup B)^c = A^c \cap B^c$.

Definition 1.9

Let Ω be a set. The **power set** of Ω is

$$\mathscr{P}(\Omega) := \{A : A \subseteq \Omega\}.$$

Example 1.10

Question. Compute the power set of

$$\Omega = \{x, y, z\}.$$

Solution. $\mathscr{P}(\Omega)$ has $2^3 = 8$, and

$$\mathscr{P}(\Omega) = \{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}$$
(1.7)

 $\{x, z\}, \{y, z\}, \{x, y, z\}\}.$ (1.8)

Definition 1.11

Let *A*, *B* be sets. The **product** of *A* and *B* is the set of pairs

$$A \times B := \{(a, b) : a \in A, b \in B\}.$$

 $A \subseteq$ contra

1.2 Relations

Definition 1.12

Suppose *A* is a set. A **binary relation** *R* on *A* is a subset

 $R \subseteq A \times A$.

Definition 1.13: Equivalence relation

A binary relation *R* is called an **equivalence relation** if it satisfies the following properties:

1. **Reflexive**: For each $x \in A$ one has

 $(x, x) \in R$,

2. Symmetric: We have

$$(x, y) \in R \implies (y, x) \in R$$

3. Transitive: We have

$$(x, y) \in R, (y, z) \in R \implies (x, z) \in R$$

If $(x, y) \in R$ we write

 $x \sim y$

and we say that *x* and *y* are **equivalent**.

Definition 1.14: Equivalence classes

Suppose *R* is an **equivalence relation** on *A*. The **equivalence class** of an element $x \in A$ is the set

$$[x] := \{ y \in A : y \sim x \}.$$

The set of equivalence classes of elements of A with respect to the equivalence relation R is denoted by

$$A/R := A/\sim := \{[x] : x \in A\}.$$

Proposition 1.15

Let \sim be an equivalence relation on *A*. Then

1. For each $x \in A$ we have

 $[x] \neq \emptyset$

2. For all $x, y \in A$ it holds

 $x \sim y \quad \Longleftrightarrow \quad [x] = [y].$

Example 1.16: Equality is an equivalence relation

Question. The equality defines a **binary relation** on $\mathbb{Q} \times \mathbb{Q}$, via

$$R := \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : x = y\}.$$

- 1. Prove that *R* is an **equivalence relation**.
- 2. Prove that $[x] = \{x\}$ and compute \mathbb{Q}/R .

Solution.

- 1. We need to check that *R* satisfies the 3 properties of an equivalence relation:
 - Reflexive: It holds, since x = x for all $x \in \mathbb{Q}$,
 - Symmetric: Again x = y if and only if y = x,
 - Transitive: If x = y and y = z then x = z.

Therefore, *R* is an equivalence relation.

2. The class of equivalence of $x \in \mathbb{Q}$ is given by

$$[x] = \{x\}$$

that is, this relation is quite trivial, given that each element of \mathbb{Q} can only be related to itself. The quotient space is then

$$\mathbb{Q}/R = \{ [x] : x \in \mathbb{Q} \} = \{ \{x\} : x \in \mathbb{Q} \}.$$

Example 1.17

Question. Let *R* be the binary relation on the set \mathbb{Q} of rational numbers defined by

$$x \sim y \iff x - y \in \mathbb{Z}$$
.

- 1. Prove that *R* is an equivalence relation on Q.
- 2. Compute [x] for each $x \in \mathbb{Q}$.
- 3. Compute Q/R.

Solution.

- 1. We have:
 - Reflexive: Let $x \in \mathbb{Q}$. Then x x = 0 and $0 \in \mathbb{Z}$. Thus $x \sim x$.
 - Symmetric: If $x \sim y$ then $x y \in \mathbb{Z}$. But then also

$$-(x-y) = y - x \in \mathbb{Z}$$

and so $y \sim x$.

• Transitive: Suppose $x \sim y$ and $y \sim z$. Then

 $x - y \in \mathbb{Z}$ and $y - z \in \mathbb{Z}$.

Thus, we have

$$x - z = (x - y) + (y - z) \in \mathbb{Z}$$

showing that $x \sim z$.

Thus, we have shown that R is an equivalence relation on \mathbb{Q} .

2. Note that

 $x \sim y \quad \iff \quad \exists n \in \mathbb{Z} \text{ s.t. } y = x + n.$

Therefore the equivalence classes with respect to \sim are

$$[x] = \{x + n : n \in \mathbb{Z}\}.$$

Each equivalence class has exactly one element in $[0, 1) \cap \mathbb{Q}$, meaning that:

$$\forall x \in \mathbb{Q}, \exists q \in \mathbb{Q} \text{ s.t. } 0 \leq q < 1 \text{ and } q \in [x].$$
 (1.9)

Indeed: take $x \in \mathbb{Q}$ arbitrary. Then $x \in [n, n + 1)$ for some $n \in \mathbb{Z}$. Setting q := x - n we obtain that

 $x = q + n, \qquad q \in [0, 1),$

proving (1.9). In particular (1.9) implies that for each $x \in \mathbb{Q}$ there exists $q \in [0, 1) \cap \mathbb{Q}$ such that

[x] = [q].

3. From Point 2 we conclude that

$$\mathbb{Q}/R = \{ [x] : x \in \mathbb{Q} \} = \{ q \in \mathbb{Q} : 0 \le q < 1 \}.$$

Definition 1.18: Partial order

A binary relation *R* on *A* is called a **partial order** if it satisfies the following properties:

1. **Reflexive**: For each $x \in A$ one has

 $(x,x) \in R$,

2. Antisymmetric: We have

$$(x, y) \in R$$
 and $(y, x) \in R \implies x = y$

3. Transitive: We have

 $(x, y) \in R, (y, z) \in R \implies (x, z) \in R$

Definition 1.19: Total order

A binary relation *R* on *A* is called a **total order relation** if it satisfies the following properties:

- 1. **Partial order**: *R* is a partial order on *A*.
- 2. **Total**: For each $x, y \in A$ we have

$$(x, y) \in R$$
 or $(y, x) \in R$.

Example 1.20: Set inclusion is a partial order but not total order

Question. Let Ω be a non-empty set and consider its **power set**

$$\mathscr{P}(\Omega) = \{A : A \subseteq \Omega\}.$$

The inclusion defines **binary relation** on $\mathscr{P}(\Omega) \times \mathscr{P}(\Omega)$, via

 $R := \{ (A, B) \in \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) : A \subseteq B \}.$

- 1. Prove that *R* is an **order relation**.
- 2. Prove that *R* is **not a total order**.

Solution.

- 1. Check that *R* is a partial order relation on $\mathscr{P}(\Omega)$:
 - Reflexive: It holds, since $A \subseteq A$ for all $A \in \mathscr{P}(\Omega)$.
 - Antisymmetric: If $A \subseteq B$ and $B \subseteq A$, then A = B.
 - Transitive: If $A \subseteq B$ and $B \subseteq C$, then, by definition of inclusion, $A \subseteq C$.
- 2. In general, *R* is **not** a total order. For example consider

 $\Omega = \{x, y\}.$

Thus

$$\mathcal{P}(\Omega) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}.$$

If we pick $A = \{x\}$ and $B = \{y\}$ then $A \cap B = \emptyset$, meaning that

$$A \not\subseteq B$$
, $B \not\subseteq A$.

This shows R is not a total order.

Example 1.21: Inequality is a total order

Question. Consider the binary relation

 $R := \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : x \le y\}.$

Prove that *R* is a **total order relation**. **Solution.** We need to check that:

- 1. Reflexive: It holds, since $x \le x$ for all $x \in \mathbb{Q}$,
- 2. Antisymmetric: If $x \le y$ and $y \le x$ then x = y.
- 3. Transitive: If $x \le y$ and $y \le z$ then $x \le z$.

Finally, we halso have that *R* is a **total order** on \mathbb{Q} , since for all $x, y \in \mathbb{Q}$ we have

 $x \le y$ or $y \le x$.

1.3 Induction

Definition 1.22: Principle of Inducion

Let $\alpha(n)$ be a statement which depends on $n \in \mathbb{N}$. Suppose that

- 1. $\alpha(1)$ is true, and
- 2. Whenever $\alpha(n)$ is true, then $\alpha(n + 1)$ is true.

Then $\alpha(n)$ is true for all $n \in \mathbb{N}$.

Example 1.23: Formula for summing first *n* natural numbers

Question. Prove by induction that the following formula holds for all $n \in \mathbb{N}$:

$$1 + 2 + 3 + ... + (n - 1) + n = \frac{n(n + 1)}{2}$$
. (1.10)

Solution. Define

$$S(n) = 1 + 2 + \dots + n$$
.

This way the formula at (1.10) is equivalent to

$$S(n) = \frac{n(n+1)}{2}, \quad \forall n \in \mathbb{N}.$$

- 1. It is immediate to check that (1.10) holds for n = 1.
- 2. Suppose (1.10) holds for n = k. Then

$$S(k+1) = 1 + \dots + k + (k+1)$$
(1.11)

$$= S(k) + (k+1)$$
(1.12)

$$=\frac{k(k+1)}{2} + (k+1) \tag{1.13}$$

$$=\frac{k(k+1)+2(k+1)}{2}$$
(1.14)

$$=\frac{(k+1)(k+2)}{2}$$
(1.15)

where in the first equality we used that (1.10) holds for n = k. We have proven that

$$S(k+1) = \frac{(k+1)(k+2)}{2}.$$

The RHS in the above expression is exactly the RHS of (1.10) computed at n = k + 1. Therefore, we have shown that formula (1.10) holds for n = k + 1.

By the Principle of Induction, we conclude that (1.10) holds for all $n \in \mathbb{N}$.

Example 1.24: Bernoulli's inequality

Question. Let $x \in \mathbb{R}$ with x > -1. Bernoulli's inequality states that

$$(1+x)^n \ge 1 + nx, \quad \forall n \in \mathbb{N}.$$
(1.16)

Prove Bernoulli's inequality by induction.

Solution. Let $x \in \mathbb{R}$, x > -1. We prove the statement by induction:

- Base case: (1.16) holds with equality when n = 1.
- Induction hypothesis: Let $k \in \mathbb{N}$ and suppose that (1.16) holds for n = k, i.e.,

$$(1+x)^k \ge 1+kx.$$

Then

$$(1+x)^{k+1} = (1+x)^k (1+x)$$

$$\ge (1+kx)(1+x)$$

$$= 1+kx+x+kx^2$$

$$\ge 1+(k+1)x,$$

where we used that $kx^2 \ge 0$. Then (1.16) holds for n = k + 1.

By induction we conclude (1.16).

1.4 Absolute value

For $x \in \mathbb{R}$ we define its **absolute value** as the quantity

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Proposition 1.26

For all $x \in \mathbb{R}$ they hold:

|x| ≥ 0.
 |x| = 0 if and only if x = 0.
 |x| = |-x|.

Lemma 1.27

Let $x, y \in \mathbb{R}$. Then

 $|x| \le y \iff -y \le x \le y.$

Corollary 1.28

Let $x, y \in \mathbb{R}$. Then

$$|x| < y \iff -y < x < y.$$

Theorem 1.29: Triangle inequality

For every $x, y \in \mathbb{R}$ we have

$$||x| - |y|| \le |x + y| \le |x| + |y|.$$
(1.17)

Proposition 1.30

For any $x, y \in \mathbb{R}$ it holds

 $||x| - |y|| \le |x - y| \le |x| + |y|.$ (1.18)

Moreover for any $x, y, z \in \mathbb{R}$ it holds

$$|x - y| \le |x - z| + |z - y|$$
.

2 Real Numbers

2.1 Fields

Definition 2.1: Binary operation

A binary operation on a set K is a function

 $\circ \; : \; K \times K \to K$

which maps the ordered pair (x, y) into $x \circ y$.

Definition 2.2

Let *K* be a set and \circ : $K \times K \rightarrow K$ be a binary operation on *K*. We say that:

1. • is commutative if

$$x \circ y = y \circ x, \quad \forall x, y \in K$$

2. • is associative if

$$(x \circ y) \circ z = x \circ (y \circ z), \quad \forall x, y, z \in K$$

3. An element $e \in K$ is called **neutral element** of \circ if

 $x \circ e = e \circ x = x$, $\forall x \in K$

4. Let *e* be a neutral element of \circ and let $x \in K$. An element $y \in K$ is called an **inverse** of *x* with respect to \circ if

 $x \circ y = y \circ x = e$.

Example 2.3

Question. Let $K = \{0, 1\}$ be a set with binary operation \circ defined by the table

o	0	1
0	1	1
1	0	0

1. Is • commutative? Justify your answer.

2. Is • associative? Justify your answer.

Solution.

1. We have

 $0 \circ 1 = 1, \quad 1 \circ 0 = 0$

and therefore

$$0 \circ 1 \neq 1 \circ 0$$

showing that \circ is not commutative.

2. We have

 $(0\circ 1)\circ 1=1\circ 1=0\,,$

 $0 \circ (1 \circ 1) = 0 \circ 0 = 1$,

while

so that

 $(0 \circ 1) \circ 1 \neq 0 \circ (1 \circ 1).$

Thus, ∘ is not associative.

Definition 2.4: Field

Let *K* be a set with binary operations of **addition**

 $+ : K \times K \to K, \quad (x, y) \mapsto x + y$

and **multiplication**

:
$$K \times K \to K$$
, $(x, y) \mapsto x \cdot y = xy$.

We call the triple $(K, +, \cdot)$ a **field** if:

- 1. The addition + satisfies: $\forall x, y, z \in K$
 - (A1) Commutativity and Associativity:

$$x + y = y + x$$

$$(x+y) + z = x + (y+z)$$

• (A2) Additive Identity: There exists a neutral element in *K* for +, which we call 0. It holds:

x + 0 = 0 + x = x

(A₃) Additive Inverse: There exists an inverse of *x* with respect to +. We call this element the additive inverse of *x* and denote it by -*x*. It holds

$$x + (-x) = (-x) + x = 0$$

2. The multiplication \cdot satisifes: $\forall x, y, z \in K$

• (M1) Commutativity and Associativity:

$$x \cdot y = y \cdot x$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

• (M2) **Multiplicative Identity**: There exists a **neutral element** in *K* for ·, which we call 1. It holds:

 $x \cdot 1 = 1 \cdot x = x$

• (M₃) **Multiplicative Inverse**: If $x \neq 0$ there exists an **inverse** of x with respect to \cdot . We call this element the **multiplicative inverse** of x and denote it by x^{-1} . It holds

$$x \cdot x^{-1} = x^{-1} \cdot x = 1$$

- 3. The operations + and \cdot are related by
 - (AM) **Distributive Property**: $\forall x, y, z \in K$

$$x \cdot (y+z) = (x \cdot y) + (y \cdot z).$$

Theorem 2.5

Consider the sets $\mathbb{N},\mathbb{Z},\mathbb{Q}$ with the usual operations + and $\cdot.$ We have:

- $(\mathbb{N}, +, \cdot)$ is not a field.
- $(\mathbb{Z}, +, \cdot)$ is not a field.
- $(\mathbb{Q}, +, \cdot)$ is a field.

Theorem 2.6

Let *K* with + and \cdot defined by

Then $(K, +, \cdot)$ is a field.

Proposition 2.7: Uniqueness of neutral elements and inverses

Let $(K, +, \cdot)$ be a field. Then

- There is a unique element in *K* with the property of
 0.
- There is a unique element in *K* with the property of
 1.
- 3. For all $x \in K$ there is a unique additive inverse -x.
- 4. For all $x \in K$, $x \neq 0$, there is a unique multiplicative inverse x^{-1} .

Proof

1. Suppose that $0 \in K$ and $\tilde{0} \in K$ are both neutral element of +, that is, they both satisfy (A2). Then

 $0+\tilde{0}=0$

since $\tilde{0}$ is a neutral element for +. Moreover

$$\tilde{0} + 0 = \tilde{0}$$

since 0 is a neutral element for +. By commutativity of +, see property (A1), we have

$$0 = 0 + \tilde{0} = \tilde{0} + 0 = \tilde{0}$$

showing that $0 = \tilde{0}$. Hence the neutral element for + is unique.

- 2. Exercise.
- Let x ∈ K and suppose that y, ỹ ∈ K are both additive inverses of x, that is, they both satisfy (A₃). Therefore

$$x + y = 0$$

since y is an additive inverse of x and

 $x + \tilde{y} = 0$

since \tilde{y} is an additive inverse of x. Therefore we can use commutativity and associativity and of +, see property (A1), and the fact that 0 is the neutral element of +, to infer

$$y = y + 0 = y + (x + \tilde{y})$$
$$= (y + x) + \tilde{y} = (x + y) + \tilde{y}$$
$$= 0 + \tilde{y} = \tilde{y},$$

concluding that $y = \tilde{y}$. Thus there is a unique additive inverse of *x*, and

$$y = \tilde{y} = -x,$$

with -x the element from property (A₃). 4. Exercise.

Definition 2.8

Let *K* be a set with binary operations + and \cdot , and with an order relation \leq . We call $(K, +, \cdot, \leq)$ an **ordered field** if:

- 1. $(K, +, \cdot)$ is a field
- 2. There \leq is of **total order** on K: $\forall x, y, z \in K$
 - (O1) Reflexivity:

 $x \le x$

• (O₂) Antisymmetry:

 $x \le y \text{ and } y \le x \implies x = y$

• (O₃) Transitivity:

 $x \le y$ and $y \le z \implies x = z$

• (O₄) Total order:

 $x \le y$ or $y \le x$

- 3. The operations + and \cdot , and the total order \leq , are related by the following properties: $\forall x, y, z \in K$
 - (AM) **Distributive**: Relates addition and multiplication via

 $x \cdot (y+z) = x \cdot y + x \cdot z$

• (AO) Relates addition and order with the requirement:

 $x \le y \implies x+z \le y+z$

• (MO) Relates multiplication and order with the requirement:

 $x \ge 0, \ y \ge 0 \implies x \cdot y \ge 0$

Theorem 2.9

 $(\mathbb{Q}, +, \cdot, \leq)$ is an **ordered field**.

2.2 Supremum and infimum

Definition 2.10: Upper bound, bounded above, supremum, maximum

Let $A \subseteq K$:

1. We say that $b \in K$ is an **upper bound** for *A* if

 $a \leq b$, $\forall a \in A$.

- 2. We say that A is **bounded above** if there exists and upper bound $b \in K$ for A.
- 3. We say that $s \in K$ is the **least upper bound** or **supremum** of A if:
 - *s* is an upper bound for *A*,

• *s* is the smallest upper bound of *A*, that is,

If $b \in K$ is upper bound for A then $s \leq b$.

If it exists, the supremum is denoted by

 $s = \sup A$.

4. Let $A \subseteq K$. We say that $M \in K$ is the **maximum** of A if:

 $M \in A$ and $a \leq M$, $\forall a \in A$.

If it exists, we denote the maximum by

 $M = \max A$.

Remark 2.11

Note that if a set $A \subseteq K$ in **NOT** bounded above, then the supremum does not exist, as there are no upper bounds of *A*.

Proposition 2.12: Relationship between Max and Sup

Let $A \subseteq K$. If the maximum of A exists, then also the supremum exists, and

 $\sup A = \max A$.

Definition 2.13: Upper bound, bounded below, infimum, minimum

Let $A \subseteq K$:

1. We say that $l \in K$ is a **lower bound** for A if

 $l \leq a \,, \quad \forall \, a \in A \,.$

- 2. We say that A is **bounded below** if there exists a lower bound $l \in K$ for A.
- 3. We say that $i \in K$ is the **greatest lower bound** or **infimum** of A if:
 - *i* is a lower bound for *A*,
 - *i* is the largest lower bound of *A*, that is,

If $l \in K$ is a lower bound for A then $l \leq i$.

If it exists, the infimum is denoted by

 $i = \inf A$.

4. We say that $m \in K$ is the **minimum** of A if:

 $m \in A$ and $m \leq a, \forall a \in A$.

If it exists, we denote the minimum by

 $m = \min A$.

Proposition 2.14

Let $A \subseteq K$. If the minimum of A exists, then also the infimum exists, and

 $\inf A = \min A$.

Proposition 2.15

Let $A \subseteq K$. If inf A and sup A exist, then

 $\inf A \le a \le \sup A, \quad \forall a \in A.$

Proposition 2.16: Relationship between sup and inf

Let $A \subseteq K$. Define

$$-A := \{-a : a \in A\}.$$

They hold

1. If $\sup A$ exists, then $\inf A$ exists and

 $\inf(-A) = -\sup A.$

2. If $\inf A$ exists, then $\sup A$ exists and

 $\sup(-A) = -\inf A.$

2.3 Axioms of Real Numbers

Definition 2.17: Completeness

Let $(K, +, \cdot, \leq)$ be an ordered field. We say that *K* is **complete** if it holds the property:

• (AC) For every $A \subseteq K$ non-empty and bounded above

 $\sup A \in K$.

Theorem 2.18

 $\mathbbm Q$ is not complete. In particular, there exists a set $A\subseteq \mathbbm Q$ such that

• *A* is non-empty,

- *A* is bounded above,
- $\sup A$ does not exist in \mathbb{Q} .

Proposition 2.19

Let (K, \pm, \cdot, \leq) be a complete ordered field. Suppose that **Definition 2.20:** System of Real Numbers \mathbb{R}

A system of Real Numbers is a set \mathbb{R} with two operations + and \cdot , and a total order relation \leq , such that

- $(\mathbb{R}, +, \cdot, \leq)$ is an ordered field
- \mathbbm{R} sastisfies the Axiom of Completeness

2.3.1 Inductive sets

Definition 2.21: Inductive set

Let $S \subseteq \mathbb{R}$. We say that *S* is an inductive set if they are satisfied:

Example 2.22

Question. Prove the following:

- 1. \mathbb{R} is an inductive set.
- 2. The set $A = \{0, 1\}$ is not an inductive set.

Solution.

- 1. We have that $1 \in \mathbb{R}$ by axiom (M2). Moreover $(x + 1) \in \mathbb{R}$ for every $x \in \mathbb{R}$, by definition of sum +.
- 2. We have $1 \in A$ but $(1 + 1) \notin A$ since $1 + 1 \neq 0$

13

Proposition 2.23

Let ${\mathscr M}$ be a collection of inductive subsets of ${\mathbb R}.$ Then

$$S := \bigcap_{M \in \mathscr{M}} M$$

is an inductive subset of $\mathbb R.$

Definition 2.24: Set of Natural Numbers

Let \mathcal{M} be the collection of **all** inductive subsets of \mathbb{R} . We define the set of natural numbers in \mathbb{R} as

$$\mathbb{N} := \bigcap_{M \in \mathscr{M}} M$$

Proposition 2.25: $\mathbb{N}_{\mathbb{R}}$ is the smallest inductive subset of \mathbb{R}

Let $C \subseteq \mathbb{R}$ be an inductive subset. Then

 $\mathbb{N} \subseteq C$.

In other words, \mathbb{N} is the smallest inductive set in \mathbb{R} .

Theorem 2.26

Let $x \in \mathbb{N}$. Then

 $x \ge 1$.

3 Properties of \mathbb{R}

Theorem 3.1: Archimedean Property

Let $x \in \mathbb{R}$ be given. Then:

1. There exists $n \in \mathbb{N}$ such that

n > x.

2. Suppose in addition that x > 0. There exists $n \in \mathbb{N}$ such that $\frac{1}{n} < x$.

Theorem 3.2: Archimedean Property (Alternative formulation)

Let $x, y \in \mathbb{R}$, with 0 < x < y. There exists $n \in \mathbb{N}$ such that

nx > y.

Theorem 3.3: Nested Interval Property

For each $n \in \mathbb{N}$ assume given a closed interval

$$I_n := [a_n, b_n] = \{ x \in \mathbb{R} : a_n \le x \le b_n \}.$$

Suppose that the intervals are nested, that is,

$$I_n \supset I_{n+1}$$
, $\forall n \in \mathbb{N}$.

Then

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$
(3.1)

Example 3.4

Question. Consider the open intervals

$$I_n := \left(0, \frac{1}{n}\right) \,.$$

These are clearly nested

$$I_n \supset I_{n+1}, \quad \forall n \in \mathbb{N}.$$

Prove that

$$\bigcap_{n=1}^{\infty} I_n = \emptyset \,. \tag{3.2}$$

Solution. Suppose by contradiction that the intersection is non-empty. Then there exists $x \in \mathbb{N}$ such that

$$x \in I_n$$
, $\forall n \in \mathbb{N}$.

By definition of I_n the above reads

$$0 < x < \frac{1}{n}, \quad \forall n \in \mathbb{N}.$$
(3.3)

Since x > 0, by the Archimedean Property in Theorem 3.1 Point 2, there exists $n_0 \in \mathbb{N}$ such that

$$0 < \frac{1}{n_0} < x$$

The above contradicts (3.3). Therefore (3.2) holds.

3.1 Revisiting Sup and Inf

Proposition 3.5: Characterization of Supremum

Let $A \subseteq \mathbb{R}$ be a non-empty set. Suppose that $s \in \mathbb{R}$ is an upper bound for *A*. They are equivalent:

1. $s = \sup A$ 2. For every $\varepsilon > 0$ there exists $x \in A$ such that

 $s - \varepsilon < x$.

Proposition 3.6: Characterization of Infimum

Let $A \subseteq \mathbb{R}$ be a non-empty set. Suppose that $i \in \mathbb{R}$ is a lower bound for *A*. They are equivalent:

- 1. $i = \inf A$
- 2. For every $\varepsilon \in \mathbb{R}$, with $\varepsilon > 0$, there exists $x \in A$ such that

 $x < i + \varepsilon$.

Proposition 3.7

Let $a, b \in \mathbb{R}$ with a < b. Let

$$A := (a, b) = \{ x \in \mathbb{R} : a < x < b \}.$$

Then

 $\inf A = a$, $\sup A = b$.

Corollary 3.8

Let $a, b \in \mathbb{R}$ with a < b. Let

$$A := (a, b) = \{ x \in \mathbb{R} : a < x < b \}.$$

Then $\min A$ and $\max A$ do not exist.

Corollary 3.9

Let $a, b \in \mathbb{R}$ with a < b. Let

$$A := [a, b] = \{ x \in \mathbb{R} : a \le x < b \}.$$

Then

 $\min A = \inf A = a, \quad \sup A = b,$

max A does not exist.

Proposition 3.10

Define the set

$$A := \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$$

Then

$$\inf A = 0$$
, $\sup A = \max A = 1$.

Proof

Part 1. We have

$$\frac{1}{n} \le 1 \,, \quad \forall \, n \in \mathbb{N}$$

Therefore 1 is an upper bound for *A*. Since $1 \in A$, by definition of maximum we conclude that

 $\max A = 1.$

Since the maximum exists, we conclude that also the supremum exists, and

$$\sup A = \max A = 1.$$

Part 2. We have

$$\frac{1}{n} > 0, \quad \forall n \in \mathbb{N}$$

showing that 0 is a lower bound for *A*. Suppose by contradiction that 0 is not the infimum. Therefore 0 is not the largest lower bound. Then there exists $\varepsilon \in \mathbb{R}$ such that:

• ε is a lower bound for *A*, that is,

$$\varepsilon \leq \frac{1}{n}, \quad \forall n \in \mathbb{N},$$
 (3.4)

• ε is larger than 0:

 $0 < \varepsilon$.

As $\varepsilon > 0$, by the Archimedean Property there exists $n_0 \in \mathbb{N}$ such that

$$0 < \frac{1}{n_0} < \varepsilon$$

This contradicts (3.4). Thus 0 is the largest lower bound of A, that is, $0 = \inf A$.

Part 3. We have that min *A* does not exist. Indeed suppose by contradiction that min *A* exists. Then

$$\min A = \inf A.$$

As $\inf A = 0$ by Part 2, we conclude $\min A = 0$. As $\min A \in A$, we obtain $0 \in A$, which is a contradiction.

3.2 Cardinality

Definition 3.11: Cardinality, Finite, Countable, Uncountable

Let *X* be a set. The **cardinality** of *X* is the number of elements in *X*. We denote the cardinality of *X* by

$$|X| := #$$
 of elements in X.

Further, we say that:

1. *X* is **finite** if there exists a natural number $n \in \mathbb{N}$ and a bijection

$$f: \{1, 2, \dots, n\} \to X.$$

In particular

$$|X|=n\,.$$

2. X is **countable** if there exists a bijection

$$f: \mathbb{N} \to X.$$

In this case we denote the cardinality of X by

$$|X| = |\mathbb{N}|$$

3. *X* is **uncountable** if *X* is neither finite, nor countable.

Proposition 3.12

Let *X* be a countable set and $A \subseteq X$. Then either *A* is finite or countable.

Example 3.13

Question. Prove that $X = \{a, b, c\}$ is finite. **Solution.** Set $Y = \{1, 2, 3\}$. The function $f : X \rightarrow Y$ defined by

f(1) = a, f(2) = b, f(3) = c,

is bijective. Therefore *X* is finite, with |X| = 3.

Example 3.14

Question. Prove that the set of natural numbers \mathbb{N} is countable.

Solution. The function $f : X \to \mathbb{N}$ defined by

f(n) := n,

is bijective. Therefore $X = \mathbb{N}$ is countable.

Example 3.15

Question. Let *X* be the set of even numbers

$$X = \{2n : n \in \mathbb{N}\}.$$

Prove that *X* is countable. **Solution.** Define the map $f : \mathbb{N} \to X$ by

f(n) := 2n.

We have that:

1. f is injective, because

 $f(m) = f(k) \implies 2m = 2k \quad m = k$.

2. *f* is surjective: Suppose that $m \in X$. By definition of *X*, there exists $n \in \mathbb{N}$ such that m = 2n. Therefore, f(n) = m.

We have shown that f is bijective. Thus, X is countable.

Example 3.16

Question. Prove that the set of integers \mathbb{Z} is countable.

Solution. Define $f : \mathbb{N} \to \mathbb{Z}$ by

$$f(n) := \begin{cases} \frac{n}{2} & \text{if } n \text{ even} \\ -\frac{n+1}{2} & \text{if } n \text{ odd} \end{cases}$$

For example

$$f(0) = 0, \quad f(1) = -1, \quad f(2) = 1, \quad f(3) = -2,$$

$$f(4) = 2, \quad f(5) = -3, \quad f(6) = 3, \quad f(7) = -4.$$

We have:

f is injective: Indeed, suppose that *m* ≠ *n*. If *n* and *m* are both even or both odd we have, respectively

$$f(m) = \frac{m}{2} \neq \frac{n}{2} = f(n)$$

$$f(m) = -\frac{m+1}{2} \neq -\frac{n+1}{2} = f(n).$$

If instead m is even and n is odd, we get

$$f(m) = \frac{m}{2} \neq -\frac{n+1}{2} = f(n)$$

since the LHS is positive and the RHS is negative. The case when m is odd and n even is similar.

2. *f* is surjective: Let $z \in \mathbb{Z}$. If $z \ge 0$, then m := 2z belongs to \mathbb{N} , is even, and

$$f(m) = f(2z) = z.$$

If instead z < 0, then m := -2z - 1 belongs to \mathbb{N} , is odd, and

$$f(m)=f(-2z-1)=z.$$

Therefore f is bijective, showing that \mathbb{Z} is countable.

Proposition 3.17

Let the set A_n be countable for all $n \in \mathbb{N}$. Define

$$A=\bigcup_{n\in\mathbb{N}}A_n.$$

Then A is countable.

Theorem 3.18: Q is countable

The set of rational numbers Q is countable.

Theorem 3.19: R is uncountable

The set of Real Numbers \mathbb{R} is **uncountable**.

Theorem 3.20

The set of irrational numbers

 $\mathscr{I} := \mathbb{R} \smallsetminus \mathbb{Q}$

is uncountable.

Proof

We know that $\mathbb R$ in uncountable and $\mathbb Q$ is countable. Suppose by contradiction that $\mathcal F$ is countable. Then

 $\mathbb{Q}\cup\mathcal{I}$

is countable by Proposition 3.17, being union of countable sets. Since by definition

$$\mathbb{R}=\mathbb{Q}\cup\mathcal{I}\,,$$

we conclude that $\mathbb R$ is countable. Contradiction.

4 Complex Numbers

Definition 4.1: Complex Numbers

The set of complex numbers $\mathbb C$ is defined as

$$\mathbb{C} := \mathbb{R} + i\mathbb{R} := \{x + iy : x, y \in \mathbb{R}\}.$$

For a complex number

 $z = x + iy \in \mathbb{C}$

we say that

• *x* is the **real part** of *z*, and denote it by

 $x = \operatorname{Re}(z)$

• *y* is the **imaginary part** of *z*, and denote it by

 $y = \operatorname{Im}(z)$

We say that

• If $\operatorname{Re} z = 0$ then z is a **purely imaginary** number.

• If Im z = 0 then z is a **real** number.

Definition 4.2: Addition and multiplication in \mathbb{C}

Let $z_1, z_2 \in \mathbb{C}$, so that

 $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$,

for some $x_1, x_2, y_1, y_2 \in \mathbb{R}$:

1. The sum of z_1 and z_2 is

$$z_1 + z_2 := (x_1 + x_2) + i(y_1 + y_2)$$
.

2. The multiplication of z_1 and z_2 is

$$z_1 \cdot z_2 := (x_1 \cdot x_2 - y_1 \cdot y_2) + i(x_1 \cdot y_2 + x_2 \cdot y_1) ,$$

Example 4.3

Question. Compute *zw*, where

z = -2 + 3i, w = 1 - i.

Solution. Using the definition we compute

$$z \cdot w = (-2 + 3i) \cdot (1 - i)$$

= (-2 - (-3)) + (2 + 3)i
= 1 + 5i.

Alternatively, we can proceed formally: We just need to recall that i^2 has to be replaced with -1:

$$z \cdot w = (-2 + 3i) \cdot (1 - i)$$

= -2 + 2i + 3i - 3i²
= (-2 + 3) + (2 + 3)i
= 1 + 5i.

Proposition 4.4: Additive inverse in \mathbb{C}

The neutral element of addition in $\mathbb C$ is the number

$$0 := 0 + 0i$$

For any $z = x + iy \in \mathbb{C}$, the unique additive inverse is given by

$$-z := -x - iy$$
.

Proposition 4.5: Multiplicative inverse in C

The neutral element of multiplication in $\mathbb C$ is the number

$$1 := 1 + 0i$$
.

For any $z = x + iy \in \mathbb{C}$, the unique multiplicative inverse is given by

$$z^{-1} := \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}.$$

Proof

It is immediate to check that 1 is the neutral element of multiplication in \mathbb{C} . For the remaining part of the statement, set

$$w := \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}.$$

We need to check that $z \cdot w = 1$

$$z \cdot w = (x + iy) \cdot \left(\frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2}\right)$$
$$= \left(\frac{x^2}{x^2 + y^2} - \frac{y \cdot (-y)}{x^2 + y^2}\right) + i\left(\frac{x \cdot (-y)}{x^2 + y^2} + \frac{xy}{x^2 + y^2}\right)$$
$$= 1,$$

so indeed $z^{-1} = w$.

Example 4.6

Question. Let z = 3 + 2i. Compute z^{-1} . **Solution.** By the formula in Propostion 4.5 we immediately get

$$z^{-1} = \frac{3}{3^2 + 2^2} + \frac{-2}{3^2 + 2^2}i = \frac{3}{13} - \frac{2}{13}i.$$

Alternatively, we can proceed formally:

$$(3+2i)^{-1} = \frac{1}{3+2i}$$

= $\frac{1}{3+2i} \frac{3-2i}{3-2i}$
= $\frac{3-2i}{3^2+2^2}$
= $\frac{3}{13} - \frac{2}{13}i$,

and obtain the same result.

Theorem 4.7

 $(\mathbb{C}, +, \cdot)$ is a field.

Example 4.8

Question. Let w = 1 + i and z = 3 - i. Compute $\frac{w}{z}$. **Solution.** We compute w/z using the two options we have:

 Using the formula for the inverse from Proposition 4.5 we compute

$$z^{-1} = \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}$$
$$= \frac{3}{3^2 + 1^2} - i \frac{-1}{3^2 + 1^2}$$
$$= \frac{3}{10} + \frac{1}{10}i$$

and therefore

$$\frac{w}{z} = w \cdot z^{-1}$$

= (1+i) $\left(\frac{3}{10} + \frac{1}{10}i\right)$
= $\left(\frac{3}{10} - \frac{1}{10}\right) + \left(\frac{1}{10} + \frac{3}{10}\right)i$
= $\frac{2}{10} + \frac{4}{10}i$
= $\frac{1}{5} + \frac{2}{5}i$

2. We proceed formally, using the multiplication by 1 trick. We have

$$\frac{w}{z} = \frac{1+i}{3-i}$$

= $\frac{1+i}{3-i}\frac{3+i}{3+i}$
= $\frac{3-1+(3+1)i}{3^2+1^2}$
= $\frac{2}{10} + \frac{4}{10}i$
= $\frac{1}{5} + \frac{2}{5}i$

Definition 4.9: Complex conjugate

Let z = x + iy. We call the **complex conjugate** of z, denoted by \overline{z} , the complex number

$$\bar{z} = x - iy$$

Theorem 4.10

For all $z_1, z_2 \in \mathbb{C}$ it holds:

•
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

• $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

4.1 The complex plane

Definition 4.11: Modulus

The **modulus** of a complex number z = x + iy is defined by

$$|z| := \sqrt{x^2 + y^2}$$

Definition 4.12: Distance in C

Given $z_1, z_2 \in \mathbb{C}$, we define the **distance** between z_1 and z_2 as the quantity

 $|z_1 - z_2|$.

Theorem 4.13

Given $z_1, z_2 \in \mathbb{C}$, we have

$$|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

Example 4.14

Question. Compute the distance between

$$z = 2 - 4i$$
, $w = -5 + i$.

Solution. The distance is

$$|z - w| = |(2 - 4i) - (-5 + i)|$$

= |7 - 5i|
= $\sqrt{7^2 + (-5)^2}$
= $\sqrt{74}$

Theorem 4.15

Let $z, z_1, z_2 \in \mathbb{C}$. Then

1.
$$|z_1 \cdot z_2| = |z_1| |z_2|$$

2.
$$|z^n| = |z|^n$$
 for all $n \in \mathbb{N}$

3. $z \cdot \bar{z} = |z|^2$

Theorem 4.16: Triangle inequality in C

For all $x, y, z \in \mathbb{C}$,

- 1. $|x + y| \le |x| + |y|$
- 2. $|x z| \le |x y| + |y z|$

Definition 4.17: Argument

Let $z \in \mathbb{C}$. The angle θ between the line connecting the origin and z and the positive real axis is called the **argument** of z, and is denoted by

 $\theta := \arg(z)$.

Example 4.18

We have the following arguments:

$$arg(1) = 0 arg(i) = \frac{\pi}{2}$$

$$arg(-1) = \pi arg(-i) = -\frac{\pi}{2}$$

$$arg(1+i) = \frac{1}{4}\pi arg(-1-i) = -\frac{3}{4}\pi$$

Theorem 4.19: Polar coordinates

Let $z \in \mathbb{C}$ with z = x + iy and $z \neq 0$. Then

$$x = \rho \cos(\theta), \quad y = \rho \sin(\theta),$$

where

$$\rho := |z| = \sqrt{x^2 + y^2}, \quad \theta := \arg(z).$$

Definition 4.20: Trigonometric form

Let $z \in \mathbb{C}$. The trigonometric form of z is

$$z = |z| \left[\cos(\theta) + i\sin(\theta)\right]$$

where $\theta = \arg(z)$.

Example 4.21

Question. Suppose that $z \in \mathbb{C}$ has polar coordinates

$$\rho = \sqrt{8} \,, \quad \theta = \frac{3}{4}\pi \,.$$

Therefore, the trigonometric form of z is

$$z = \sqrt{8} \left[\cos\left(\frac{3}{4}\pi\right) + i \sin\left(\frac{3}{4}\pi\right) \right].$$

Write *z* in cartesian form. **Solution.** We have

$$x = \rho \cos(\theta) = \sqrt{8} \cos\left(\frac{3}{4}\pi\right) = -\sqrt{8} \cdot \frac{\sqrt{2}}{2} = -2$$
$$y = \rho \sin(\theta) = \sqrt{8} \sin\left(\frac{3}{4}\pi\right) = \sqrt{8} \cdot \frac{\sqrt{2}}{2} = 2.$$

Therefore, the cartesian form of z is

$$z = x + iy = -2 + 2i.$$

Corollary 4.22: Computing arg(z)

Let
$$z \in \mathbb{C}$$
 with $z = x + iy$ and $z \neq 0$. Then

$$\arg(z) = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{if } x > 0\\ \arctan\left(\frac{y}{x}\right) + \pi & \text{if } x < 0 \text{ and } y \ge 0\\ \arctan\left(\frac{y}{x}\right) - \pi & \text{if } x < 0 \text{ and } y < 0\\ \frac{\pi}{2} & \text{if } x = 0 \text{ and } y > 0\\ -\frac{\pi}{2} & \text{if } x = 0 \text{ and } y < 0 \end{cases}$$

where arctan is the inverse of tan.

Example 4.23

Question. Compute the arguments of the complex numbers

z = 3 + 4i, $\bar{z} = 3 - 4i$, $-\bar{z} = -3 + 4i$, -z = -3 - 4i.

Solution. Using the formula for arg in Corollary 4.22 we have

$$\arg(3+4i) = \arctan\left(\frac{4}{3}\right)$$
$$\arg(3-4i) = \arctan\left(-\frac{4}{3}\right) = -\arctan\left(\frac{4}{3}\right)$$
$$\arg(-3+4i) = \arctan\left(-\frac{4}{3}\right) + \pi = -\arctan\left(\frac{4}{3}\right) + \pi$$
$$\arg(-3-4i) = \arctan\left(\frac{4}{3}\right) - \pi$$

Theorem 4.24: Euler's identity

For all $\theta \in \mathbb{R}$ it holds

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Theorem 4.25

For all $\theta \in \mathbb{R}$ it holds

 $\left|e^{i\theta}\right| = 1$.

Theorem 4.26

Let $z \in \mathbb{C}$ with z = x + iy and $z \neq 0$. Then

 $z =
ho e^{i heta}$,

where

$$ho := |z| = \sqrt{x^2 + y^2}, \qquad heta := \arg(z).$$

Definition 4.27: Exponential form

The **exponential form** of a complex number $z \in \mathbb{C}$ is

$$z = \rho e^{i\theta} = |z| e^{i \arg(z)}$$

Example 4.28

Question. Write the number

$$z = -2 + 2i$$

in exponential form.

Solution. From Example 4.21 we know that z = -2 + 2i can be written in trigonometric form as

$$z = \sqrt{8} \left[\cos\left(\frac{3}{4}\pi\right) + i\sin\left(\frac{3}{4}\pi\right) \right]$$

By Euler's identity we hence obtain the exponential form

$$z = \sqrt{8}e^{i\frac{3}{4}\pi}$$

For all $k \in \mathbb{Z}$ we have

$$e^{i\theta} = e^{i(\theta + 2\pi k)}, \qquad (4.1)$$

meaning that the complex exponential is 2π -periodic.

Proposition 4.30

Let $z, z_1, z_2 \in \mathbb{C}$ and suppose that

$$z =
ho e^{i heta}$$
, $z_1 =
ho_1 e^{i heta_1}$, $z_2 =
ho_2 e^{i heta_2}$.

We have

$$z_1 \cdot z_2 = \rho_1 \rho_2 e^{i(\theta_1 + \theta_2)}, \quad z^n = \rho^n e^{in\theta},$$

for all $n \in \mathbb{N}$.

Example 4.31

Question. Compute $(-2 + 2i)^4$. **Solution.** We have two possibilities:

4.2 Fundamental Theorem of Algebra

1. Use the binomial theorem:

$$(-2+2i)^{4} = (-2)^{4} + \binom{4}{1}(-2)^{3} \cdot 2i + \binom{4}{2}(-2)^{2} \cdot (2i)^{4}$$
$$+ \binom{4}{3}(-2) \cdot (2i)^{3} + (2i)^{4}$$
$$= 16 - 4 \cdot 8 \cdot 2i - 6 \cdot 4 \cdot 4 + 4 \cdot 2 \cdot 8i + 16$$
$$= 16 - 64i - 96 + 64i + 16 = -64.$$

2. A much simpler calculation is possible by using the exponential form: We know that

$$-2 + 2i = \sqrt{8}e^{i\frac{3}{4}\pi}$$

by Example 4.28. Hence

$$(-2+2i)^4 = \left(\sqrt{8}e^{i\frac{3}{4}\pi}\right)^4 = 8^2e^{i3\pi} = -64$$

where we used that

$$e^{i3\pi} = e^{i\pi} = \cos(\pi) + i\sin(\pi) = -1$$

by 2π periodicity of $e^{i\theta}$ and Euler's identity.

Definition 4.32: Complex exponential

The complex exponential of $z \in \mathbb{C}$ is defined as

$$e^z = |z|e^{i\theta}, \quad \theta = \arg(z)$$

Theorem 4.33

Let $z, w \in \mathbb{C}$. Then

$$e^{z+w} = e^z e^w, \quad (e^z)^w = e^{zw}.$$

Example 4.34

Question. Compute i^{l} . **Solution.** We know that

$$|i| = 1$$
, $\arg(i) = \frac{\pi}{2}$.

Hence we can write i in exponential form

$$i = |i|e^{i \arg(i)} = e^{i\frac{\pi}{2}}.$$

Therefore

$$i^{i} = \left(e^{i\frac{\pi}{2}}\right)^{i} = e^{i^{2}\frac{\pi}{2}} = e^{-\frac{\pi}{2}}$$

Theorem 4.35: Fundamental theorem of algebra

Let $p_n(z)$ be a polynomial of degree *n* with complex coefficients, i.e.,

$$p_n(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0,$$

for some coefficients $a_n, \ldots, a_0 \in \mathbb{C}$ with $a_n \neq 0$. There exist

$$z_1, \ldots, z_n \in \mathbb{C}$$

solutions to the polynomial equation

$$p_n(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0.$$
 (4.3)

In particular, p_n factorizes as

$$p_n(z) = a_n (z - z_1) (z - z_2) \cdots (z - z_n) . \qquad (4.4)$$

Example 4.36

Question. Find all the complex solutions to

$$z^2 = -1$$
 (4.5)

Solution. The equation $z^2 = -1$ is equivalent to

$$p(z) = 0$$
, $p(z) := z^2 + 1$.

Since *p* has degree n = 2, the Fundamental Theorem of Algebra tells us that there are two solutions to (4.5). We have already seen that these two solutions are z = i and z = -i. Then *p* factorizes as

$$p(z) = z^2 + 1 = (z - i)(z + i)$$

Example 4.37

Question. Find all the complex solutions to

$$z^4 - 1 = 0. (4.6)$$

Solution The associated polynomial equation is

$$p(z) = 0$$
, $p(z) := z^4 - 1$.

Since *p* has degree n = 4, the Fundamental Theorem of Algebra tells us that there are 4 solutions to (4.6). Let us find such solutions. We use the well known identity

$$a^2 - b^2 = (a+b)(a-b), \quad \forall a, b \in \mathbb{R},$$

to factorize *p*. We get:

$$p(z) = (z^4 - 1) = (z^2 + 1)(z^2 - 1)$$

(4.2)

We know that

 $z^2 + 1 = 0$

has solutions $z = \pm i$. Instead

 $z^2 - 1 = 0$

has solutions $x = \pm 1$. Hence, the four solutions of (4.6) are given by

$$z = 1, -1, i, -i,$$

and p factorizes as

$$p(z) = z^4 - 1 = (z - 1)(z + 1)(z - i)(z + i).$$

Definition 4.38

Suppose that the polynomial p_n factorizes as

$$p_n(z) = a_n(z - z_1)^{k_1}(z - z_2)^{k_2} \cdots (z - z_m)^{k_m}$$

with $a_n \neq 0, z_1, \dots, z_m \in \mathbb{C}$ and $k_1, \dots, k_m \in \mathbb{N}, k_i \geq 1$. In this case p_n has degree

$$n = k_1 + \ldots + k_m = \sum_{i=1}^m k_i$$

Note that z_i is solves the equation

$$p_n(z)=0$$

exactly k_i times. We call k_i the **multiplicity** of the solution z_i .

Example 4.39

The equation

$$(z-1)(z-2)^2(z+i)^3 = 0$$

has 6 solutions:

- z = 1 with multiplicity 1
- z = 2 with multiplicity 2
- z = -i with multiplicity 3

4.3 Solving polynomial equations

Proposition 4.40: Quadratic formula

Let $a, b, c \in \mathbb{R}, a \neq 0$ and consider the equation

$$ax^2 + bx + c = 0. (4.7)$$

Define

$$\Delta := b^2 - 4ac \in \mathbb{R}.$$

The following hold:

 If Δ > 0 then (4.7) has two distinct real solutions z₁, z₂ ∈ ℝ given by

$$z_1 = \frac{-b - \sqrt{\Delta}}{2a}, \quad z_2 = \frac{-b + \sqrt{\Delta}}{2a}.$$

2. If $\Delta = 0$ then (4.7) has one real solution $z \in \mathbb{R}$ with multiplicity 2. Such solution is given by

$$z=z_1=z_2=\frac{-b}{2a}$$

If Δ < 0 then (4.7) has two distinct complex solutions
 z₁, z₂ ∈ C given by

$$z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$$
, $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$

where $\sqrt{-\Delta} \in \mathbb{R}$, since $-\Delta > 0$.

In all cases, the polynomial at (4.7) factorizes as

$$az^{2} + bz + c = a(z - z_{1})(z - z_{2}).$$

Example 4.41

Question. Solve the following equations:

1. $3z^2 - 6z + 2 = 0$ 2. $4z^2 - 8z + 4 = 0$ 3. $z^2 + 2z + 3 = 0$

Solution.

1. We have that

$$\Delta = (-6)^2 - 4 \cdot 3 \cdot 2 = 12 > 0$$

Therefore the equation has two distinct real solutions, given by

$$z = \frac{-(-6) \pm \sqrt{12}}{2 \cdot 3} = \frac{6 \pm \sqrt{12}}{6} = 1 \pm \frac{\sqrt{3}}{3}$$

In particular we have the factorization

$$3z^{2} - 6z + 2 = 3\left(z - 1 - \frac{\sqrt{3}}{3}\right)\left(z - 1 + \frac{\sqrt{3}}{3}\right)$$

2. We have that

$$\Delta = (-8)^2 - 4 \cdot 4 \cdot 4 = 0.$$

Therefore there exists one solution with multiplicity 2. This is given by

$$z = \frac{-(-8)}{2 \cdot 4} = 1$$
.

In particular we have the factorization

$$4z^2 - 8x + 4 = 4(z - 1)^2$$

3. We have

$$\Delta = 2^2 - 4 \cdot 1 \cdot 3 = -8 < 0$$

Therefore there are two complex solutions given by

$$z = \frac{-2 \pm i\sqrt{8}}{2 \cdot 1} = -1 \pm i\sqrt{2}$$

In particular we have the factorization

$$z^{2} + 2z + 3 = (z + 1 - i\sqrt{2})(z + 1 + i\sqrt{2}).$$

Proposition 4.42: Quadratic formula with complex coefficients

Let $a, b, c \in \mathbb{C}$, $a \neq 0$. The two solutions to

$$az^2 + bz + c = 0$$

are given by

$$z_1 = \frac{-b + S_1}{2a}, \quad z_2 = \frac{-b + S_2}{2a},$$

where S_1 and S_2 are the two solutions to

$$z^2 = \Delta$$
, $\Delta := b^2 - 4ac$.

Example 4.43

Question Find all the solutions to

$$\frac{1}{2}z^2 - (3+i)z + (4-i) = 0.$$
 (4.8)

Solution. We have

$$\Delta = (-(3+i))^2 - 4 \cdot \frac{1}{2} \cdot (4-i)$$

= 8 + 6i - 8 + 2i
= 8i.

Therefore $\Delta \in \mathbb{C}$. We have to find solutions S_1 and S_2 to the equation

$$z^2 = \Delta = 8i. \tag{4.9}$$

We look for solutions of the form z = a + ib. Then we must have that

$$z^{2} = (a + ib)^{2} = a^{2} - b^{2} + 2abi = 8i.$$

Thus

$$a^2 - b^2 = 0$$
, $2ab = 8$.

From the first equation we conclude that |a| = |b|. From the second equation we have that ab = 4, and therefore aand b must have the same sign. Hence a = b, and

$$2ab = 8 \implies a = b = \pm 2.$$

From this we conclude that the solutions to (4.9) are

$$S_1 = 2 + 2i$$
, $S_2 = -2 - 2i$.

Hence the solutions to (4.8) are

$$z_1 = \frac{3+i+S_1}{2 \cdot \frac{1}{2}} = 3+i+S_1$$

= 3+i+2+2i = 5+3i,

and

$$z_2 = \frac{3+i+S_2}{2 \cdot \frac{1}{2}} = 3+i+S_2$$

= 3+i-2-2i = 1-i.

In particular, the given polynomial factorizes as

$$\frac{1}{2}z^2 - (3+i)z + (4-i) = \frac{1}{2}(z-z_1)(z-z_2)$$
$$= \frac{1}{2}(z-5-3i)(z-1+i).$$

Example 4.44

Question. Consider the equation

$$z^3 - 7z^2 + 6z = 0.$$

- 1. Check whether z = 0, 1, -1 are solutions.
- 2. Using your answer from Point 1, and polynomial division, find all the solutions.

Solution.

 By direct inspection we see that z = 0 and z = 1 are solutions. 2. Since z = 0 is a solution, we can factorize

$$z^3 - 7z^2 + 6z = z \left(z^2 - 7z + 6 \right) \, .$$

We could now use the quadratic formula on the term $z^2 - 7z + 6$ to find the remaining two roots. However, we have already observed that z = 1 is a solution. Therefore z - 1 divides $z^2 - 7z + 6$. Using polynomial long division, we find that

$$\frac{z^2 - 7z + 6}{z - 1} = z - 6.$$

Therefore the last solution is z = 6, and

Example 4.45

Question. Find all the complex solutions to

$$z^3 - 7z + 6 = 0$$
.

Solution. It is easy to see z = 1 is a solution. This means that z - 1 divides $z^3 - 7z + 6$. By using polynomial long division, we compute that

$$\frac{z^3 - 7z + 6}{z - 1} = z^2 + z - 6.$$

We are now left to solve

$$z^2 + z - 6 = 0.$$

Using the quadratic formula, we see that the above is solved by z = 2 and z = -3. Therefore the given polynomial factorizes as

 $z^{3} - 7z + 6 = (z - 1)(z - 2)(z + 3).$

4.4 Roots

Theorem 4.46

Let $n \in \mathbb{N}$ and consider the equation

$$z^n = 1$$
. (4.10)

All the *n* solutions to (4.10) are given by

$$z_k = \exp\left(i\frac{2\pi k}{n}\right), \quad k = 0, \dots, n-1,$$

where $\exp(x)$ denotes e^x .

Definition 4.47

The *n* solutions to

 $z^n = 1$

are called the **roots of unity**.

Example 4.48

Question. Find all the solutions to

$$z^4 = 1$$

Solution. The 4 solutions are given by

$$z_k = \exp\left(i\frac{2\pi k}{4}\right) = \exp\left(i\frac{\pi k}{2}\right),$$

for k = 0, 1, 2, 3. We compute:

$$egin{aligned} z_0 &= e^{i0} = 1\,, & z_1 &= e^{irac{\pi}{2}} &= i\,, \ z_2 &= e^{i\pi} &= -1\,, & z_3 &= e^{irac{3\pi}{2}} &= -i\,. \end{aligned}$$

Note that for k = 4 we would again get the solution $z = e^{i2\pi} = 1$.

Example 4.49

Question. Find all the solutions to

$$z^3 = 1$$
.

Solution. The 3 solutions are given by

$$z_k = \exp\left(i\frac{2\pi k}{3}\right)\,,$$

for k = 0, 1, 2. We compute:

$$z_0 = e^{i0} = 1$$
, $z_1 = e^{i\frac{2\pi}{3}}$, $z_2 = e^{i\frac{4\pi}{3}}$.

We can write z_1 and z_2 in cartesian form:

$$z_1 = e^{i\frac{2\pi}{3}} = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

and

$$z_2 = e^{i\frac{4\pi}{3}} = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i.$$

Theorem 4.50

Let $n \in \mathbb{N}$, $c \in \mathbb{C}$ and consider the equation

$$z^n = c. (4.11)$$

All the *n* solutions to (4.11) are given by

$$z_k = \sqrt[n]{|c|} \exp\left(i\frac{\theta+2\pi k}{n}\right), \quad k=0,\ldots,n-1,$$

where $\sqrt[n]{|c|}$ is the *n*-th root of the real number |c|, and $\theta = \arg(c)$.

Example 4.51

Question. Find all the $z \in \mathbb{C}$ such that

$$z^5 = -32$$

Solution. Let c = -32. We have

$$|c| = |-32| = 32 = 2^5$$
, $\theta = \arg(-32) = \pi$.

The 5 solutions are given by

$$z_k = \left(2^5\right)^{\frac{1}{5}} \exp\left(i\pi \frac{1+2k}{5}\right), \quad k \in \mathbb{Z},$$

for k = 0, 1, 2, 3, 4. We get

$$z_{0} = 2e^{i\frac{\pi}{5}} \qquad z_{1} = 2e^{i\frac{3\pi}{5}}$$
$$z_{2} = 2e^{i\pi} = -2 \qquad z_{3} = 2e^{i\frac{7\pi}{5}}$$
$$z_{4} = 2e^{i\frac{9\pi}{5}}$$

Example 4.52

Question. Find all the $z \in \mathbb{C}$ such that

$$z^4 = 9\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right).$$

Solution. Set

$$c := 9\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right).$$

The complex number c is already in the trigonometric form, so that we can immediately obtain

$$|c| = 9$$
, $\theta = \arg(c) = \frac{\pi}{3}$

The 4 solutions are given by

$$z_k = \sqrt[4]{9} \exp\left(i\frac{\pi/3 + 2\pi k}{4}\right)$$
$$= \sqrt{3} \exp\left(i\pi \frac{1+6k}{12}\right)$$

for k = 0, 1, 2, 3. We compute

$$z_0 = \sqrt{3}e^{i\pi\frac{1}{12}} \qquad z_1 = \sqrt{3}e^{i\pi\frac{7}{12}}$$
$$z_2 = \sqrt{3}e^{i\pi\frac{13}{12}} \qquad z_3 = \sqrt{3}e^{i\pi\frac{19}{12}}$$

5 Sequences in \mathbb{R}

Definition 5.1: Convergent sequence

The real sequence (a_n) **converges** to *a*, or equivalently has limit *a*, denoted by

$$\lim_{n\to\infty}a_n=a$$

if for all $\varepsilon \in \mathbb{R}, \varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}, n \ge N$ it holds that

 $|a_n-a|<\varepsilon\,.$

Using quantifiers, we can write this as

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \ge N, |a_n - a| < \varepsilon.$$

The sequence $(a_n)_{n \in \mathbb{N}}$ is **convergent** if it admits limit.

Theorem 5.2

Let p > 0. Then

 $\lim_{n\to\infty}\frac{1}{n^p}=0.$

Proof

Let p > 0. We have to show that

$$\forall \varepsilon > 0 \,, \, \exists \, N \in \mathbb{N} \, \text{ s.t. } \, \forall \, n \geq N \,, \, \left| \frac{1}{n^p} - 0 \right| < \varepsilon \,.$$

Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that

$$N > \frac{1}{\varepsilon^{1/p}} \,. \tag{5.1}$$

Let $n \ge N$. Since p > 0, we have $n^p \ge N^p$, which implies

$$\frac{1}{n^p} \le \frac{1}{N^p} \,.$$

By (5.1) we deduce

$$\frac{1}{N^p} < \varepsilon \,.$$

Then

$$\left|\frac{1}{n^p} - 0\right| = \frac{1}{n^p} \le \frac{1}{N^p} < \varepsilon$$

Example 5.3

Question. Using the definition of convergence, prove that

$$\lim_{n \to \infty} \frac{n}{2n+3} = \frac{1}{2} \,.$$

Solution.

1. *Rough Work:* Let $\varepsilon > 0$. We want to find $N \in \mathbb{N}$ such that

$$\left|\frac{n}{2n+3}-\frac{1}{2}\right|<\varepsilon\,,\quad\forall\,n\geq N$$

To this end, we compute:

$$\left|\frac{n}{2n+3} - \frac{1}{2}\right| = \left|\frac{2n - (2n+3)}{2(2n+3)}\right|$$
$$= \left|\frac{-3}{4n+6}\right|$$
$$= \frac{3}{4n+6}.$$

Therefore

$$\begin{aligned} \left|\frac{n}{2n+3} - \frac{1}{2}\right| < \varepsilon & \iff \quad \frac{3}{4n+6} < \varepsilon \\ & \Leftrightarrow \quad \frac{4n+6}{3} > \frac{1}{\varepsilon} \\ & \Leftrightarrow \quad 4n+6 > \frac{3}{\varepsilon} \\ & \Leftrightarrow \quad 4n > \frac{3}{\varepsilon} - 6 \\ & \Leftrightarrow \quad n > \frac{3}{4\varepsilon} - \frac{6}{4} \,. \end{aligned}$$

Looking at the above equivalences, it is clear that $N \in \mathbb{N}$ has to be chosen so that

$$N > \frac{3}{4\varepsilon} - \frac{6}{4}$$

2. *Formal Proof:* We have to show that

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \ge N, \left| \frac{n}{2n+3} - \frac{1}{2} \right| < \varepsilon.$$

Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that

$$N > \frac{3}{4\varepsilon} - \frac{6}{4} \,. \tag{5.2}$$

By the rough work shown above, inequality (5.2) is equivalent to

$$\frac{3}{4N+6} < \varepsilon$$

Let $n \ge N$. Then

$$\left|\frac{n}{2n+3} - \frac{1}{2}\right| = \frac{3}{4n+6}$$
$$\leq \frac{3}{4N+6}$$
$$\leq \varepsilon.$$

where in the third line we used that $n \ge N$.

Definition 5.4: Divergent sequence

We say that a sequence $(a_n)_{n \in \mathbb{N}}$ in \mathbb{R} is **divergent** if it is not convergent.

Theorem 5.5

Let (a_n) be the sequence defined by

 $a_n = (-1)^n \, .$

Then (a_n) does not converge.

Proof

Suppose by contradiction that $a_n \rightarrow a$ for some $a \in \mathbb{R}$. Let

$$\varepsilon := \frac{1}{2}$$

Since $a_n \rightarrow a$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a| < \varepsilon = \frac{1}{3} \quad \forall n \ge N$$

If we take n = 2N, then $n \ge N$ and

$$|a_{2N} - a| = |1 - a| < \frac{1}{2}$$

If we take n = 2N + 1, then $n \ge N$ and

$$|a_{2N+1} - a| = |-1 - a| < \frac{1}{2}$$

Therefore

$$2 = |(1 - a) - (-1 - a)|$$

$$\leq |1 - a| + |-1 - a|$$

$$< \frac{1}{2} + \frac{1}{2} = 1,$$

which is a contradiction. Hence (a_n) is divergent.

Theorem 5.6: Uniqueness of limit

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence. Suppose that

$$\lim_{n\to\infty}a_n=a\,,\quad \lim_{n\to\infty}a_n=b\,.$$

Then a = b.

Definition 5.7: Bounded sequence

A sequence $(a_n)_{n \in \mathbb{N}}$ is called **bounded** if there exists a constant $M \in \mathbb{R}$, with M > 0, such that

 $|a_n| \le M, \quad \forall n \in \mathbb{N}.$

Theorem 5.8

Every convergent sequence is bounded.

Example 5.9

The sequence

 $a_n = (-1)^n$

is bounded but not convergent.

Corollary 5.10

If a sequence is not bounded, then the sequence does not converge.

Remark 5.11

For a sequence (a_n) to be unbounded, it means that

$$\forall M > 0, \exists n \in \mathbb{N} \text{ s.t. } |a_n| > M.$$

Theorem 5.12

For all p > 0, the sequence

 $a_n = n^p$

does not converge.

Theorem 5.13

The sequence

 $a_n = \log n$

does not converge.

Theorem 5.14: Algebra of limits

Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be sequences in \mathbb{R} . Suppose that

$$\lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} b_n = b,$$

for some $a, b \in \mathbb{R}$. Then,

1. Limit of sum is the sum of limits:

$$\lim_{n \to \infty} \left(a_n \pm b_n \right) = a \pm b$$

2. Limit of product is the product of limits:

$$\lim_{n\to\infty} \left(a_n b_n\right) = ak$$

3. If $b_n \neq 0$ for all $n \in \mathbb{N}$ and $b \neq 0$, then

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{a}{b}$$

Example 5.15

Question. Prove that

$$\lim_{n\to\infty}\frac{3n}{7n+4}=\frac{3}{7}\,.$$

Solution. We can rewrite

$$\frac{3n}{7n+4} = \frac{3}{7+\frac{4}{n}}$$

From Theorem 5.2, we know that

$$\frac{1}{n} \to 0$$

Hence, it follows from Theorem 5.14 Point 2 that

$$\frac{4}{n} = 4 \cdot \frac{1}{n} \to 4 \cdot 0 = 0$$

By Theorem 5.14 Point 1 we have

$$7 + \frac{4}{n} \rightarrow 7 + 0 = 7$$

Finally we can use Theorem 5.14 Point 3 to infer

$$\frac{3n}{7n+4} = \frac{3}{7+\frac{4}{n}} \to \frac{3}{7}$$

Example 5.16

Question. Prove that

$$\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 - 3} = \frac{1}{2} \,.$$

Solution. Factor n^2 to obtain

$$\frac{n^2 - 1}{2n^2 - 3} = \frac{1 - \frac{1}{n^2}}{2 - \frac{3}{n^2}}.$$

By Theorem 5.2 we have

$$\frac{1}{n^2} \to 0 \, .$$

We can then use the Algebra of Limits Theorem 5.14 Point 2 to infer

$$\frac{3}{n^2} \to 3 \cdot 0 = 0$$

and Theorem 5.14 Point 1 to get

$$1 - \frac{1}{n^2} \to 1 - 0 = 1$$
, $2 - \frac{3}{n^2} \to 2 - 0 = 2$.

Finally we use Theorem 5.14 Point 3 and conclude

$$\frac{1-\frac{1}{n^2}}{2-\frac{3}{n^2}} \to \frac{1}{2}$$

Therefore

$$\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 - 3} = \lim_{n \to \infty} \frac{1 - \frac{1}{n^2}}{2 - \frac{3}{n^2}} = \frac{1}{2}$$

Example 5.17

Question. Prove that the sequence

$$a_n = \frac{4n^3 + 8n + 1}{7n^2 + 2n + 1}$$

does not converge.

Solution. To show that the sequence (a_n) does not converge, we divide by the largest power in the denominator,

which in this case is n^2

$$a_n = \frac{4n^3 + 8n + 1}{7n^2 + 2n + 1}$$
$$= \frac{4n + \frac{8}{n} + \frac{1}{n^2}}{7 + \frac{2}{n} + \frac{1}{n^2}}$$
$$= \frac{b_n}{c_n}$$

where we set

$$b_n := 4n + \frac{8}{n} + \frac{1}{n^2}, \quad c_n := 7 + \frac{2}{n} + \frac{1}{n^2}.$$

Using the Algebra of Limits Theorem 5.14 we see that

$$c_n = 7 + \frac{2}{n} + \frac{1}{n^2} \to 7$$

Suppose by contradiction that

$$a_n \rightarrow a$$

for some $a \in \mathbb{R}$. Then, by the Algebra of Limits, we would infer

$$b_n = c_n \cdot a_n \to 7a$$
,

concluding that b_n is convergent to 7*a*. We have that

$$b_n = 4n + d_n$$
, $d_n := \frac{8}{n} + \frac{1}{n^2}$.

Again by the Algebra of Limits Theorem 5.14 we get that

$$d_n=\frac{8}{n}+\frac{1}{n^2}\to 0\,,$$

and hence

$$4n = b_n - d_n \to 7a - 0 = 7a.$$

This is a contradiction, since the sequence (4n) is unbounded, and hence cannot be convergent. Hence (a_n) is not convergent.

Example 5.18

Question. Define the sequence

$$a_n := \frac{2n^3 + 7n + 1}{5n + 9} \cdot \frac{8n + 9}{6n^3 + 8n^2 + 3}.$$

Prove that

$$\lim_{n\to\infty}a_n=\frac{8}{15}\,.$$

Solution. The first fraction in (a_n) does not converge, as it is unbounded. Therefore we cannot use Point 2 in

Theorem 5.14 directly. However, we note that

$$a_n = \frac{2n^3 + 7n + 1}{5n + 9} \cdot \frac{8n + 9}{6n^3 + 8n^2 + 3}$$
$$= \frac{8n + 9}{5n + 9} \cdot \frac{2n^3 + 7n + 1}{6n^3 + 8n^2 + 3}.$$

Factoring out n and n^3 , respectively, and using the Algebra of Limits, we see that

$$\frac{8n+9}{5n+9} = \frac{8+9/n}{5+9/n} \to \frac{8+0}{5+0} = \frac{8}{5}$$

and

$$\frac{2+7/n^2+1/n^3}{6+8/n+3/n^3} \to \frac{2+0+0}{6+0+0} = \frac{1}{3}$$

Therefore Theorem 5.14 Point 2 ensures that

 $a_n \to \frac{8}{5} \cdot \frac{1}{3} = \frac{8}{15} \,.$

Example 5.19

Question. Prove that

$$a_n = \frac{n^{7/3} + 2\sqrt{n} + 7}{4n^{3/2} + 5n}$$

does not converge.

Solution. The largest power of *n* in the denominator is $n^{3/2}$. Hence we factor out $n^{3/2}$

$$a_n = \frac{n^{7/3} + 2\sqrt{n} + 7}{4n^{3/2} + 5n}$$

= $\frac{n^{7/3 - 3/2} + 2n^{1/2 - 3/2} + 7n^{-3/2}}{4 + 5n^{-3/2}}$
= $\frac{n^{5/6} + 2n^{-1} + 7n^{-3/2}}{4 + 5n^{-3/2}}$
= $\frac{b_n}{c_n}$

where we set

$$b_n := n^{5/6} + 2n^{-1} + 7n^{-3/2}$$
, $c_n := 4 + 5n^{-3/2}$.

We see that b_n is unbounded while $c_n \rightarrow 4$. By the Algebra of Limits (and usual contradiction argument) we conclude that (a_n) is divergent.

Theorem 5.20

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} such that

$$\lim_{n\to\infty}a_n=a\,,$$

for some $a \in \mathbb{R}$. If $a_n \ge 0$ for all $n \in \mathbb{N}$ and $a \ge 0$, then

$$\lim_{n\to\infty}\sqrt{a_n}=\sqrt{a}\,.$$

Example 5.21

Question. Define the sequence

$$a_n = \sqrt{9n^2 + 3n + 1 - 3n}$$

Prove that

$$\lim_{n\to\infty} a_n = \frac{1}{2} \, .$$

Solution. We first rewrite

$$\begin{split} a_n &= \sqrt{9n^2 + 3n + 1 - 3n} \\ &= \frac{\left(\sqrt{9n^2 + 3n + 1} - 3n\right)\left(\sqrt{9n^2 + 3n + 1} + 3n\right)}{\sqrt{9n^2 + 3n + 1} + 3n} \\ &= \frac{9n^2 + 3n + 1 - (3n)^2}{\sqrt{9n^2 + 3n + 1} + 3n} \\ &= \frac{3n + 1}{\sqrt{9n^2 + 3n + 1} + 3n} \,. \end{split}$$

The biggest power of *n* in the denominator is *n*. Therefore we factor out *n*:

$$a_n = \sqrt{9n^2 + 3n + 1} - 3n$$

= $\frac{3n + 1}{\sqrt{9n^2 + 3n + 1} + 3n}$
= $\frac{3 + \frac{1}{n}}{\sqrt{9 + \frac{3}{n} + \frac{1}{n^2}} + 3}$.

By the Algebra of Limits we have

$$9 + \frac{3}{n} + \frac{1}{n^2} \to 9 + 0 + 0 = 9$$
.

Therefore we can use Theorem 5.20 to infer

$$\sqrt{9 + \frac{3}{n} + \frac{1}{n^2}} \to \sqrt{9}$$

By the Algebra of Limits we conclude:

$$a_n = \frac{3 + \frac{1}{n}}{\sqrt{9 + \frac{3}{n} + \frac{1}{n^2} + 3}} \to \frac{3 + 0}{\sqrt{9} + 3} = \frac{1}{2}$$

Example 5.22

Question. Prove that the sequence

$$a_n = \sqrt{9n^2 + 3n + 1 - 2n}$$

does not converge. **Solution.** We rewrite a_n as

$$\begin{split} a_n &= \sqrt{9n^2 + 3n + 1} - 2n \\ &= \frac{(\sqrt{9n^2 + 3n + 1} - 2n)(\sqrt{9n^2 + 3n + 1} + 2n)}{\sqrt{9n^2 + 3n + 1} - 2n)(\sqrt{9n^2 + 3n + 1} + 2n)} \\ &= \frac{9n^2 + 3n + 1 - (2n)^2}{\sqrt{9n^2 + 3n + 1} + 2n} \\ &= \frac{5n^2 + 3n + 1}{\sqrt{9n^2 + 3n + 1} + 2n} \\ &= \frac{5n + 3 + \frac{1}{n}}{\sqrt{9 + \frac{3}{n} + \frac{1}{n^2}} + 2} \\ &= \frac{b_n}{c_n}, \end{split}$$

where we factored *n*, being it the largest power of *n* in the denominator, and defined

$$b_n := 5n + 3 + \frac{1}{n}$$
, $c_n := \sqrt{9 + \frac{3}{n} + \frac{1}{n^2} + 2}$.

Note that

$$9 + \frac{3}{n} + \frac{1}{n^2} \to 9$$

by the Algebra of Limits. Therefore

$$\sqrt{9 + \frac{3}{n} + \frac{1}{n^2}} \to \sqrt{9} = 3$$

by Theorem 5.20. Hence

$$c_n = \sqrt{9 + \frac{3}{n} + \frac{1}{n^2}} + 2 \rightarrow 3 + 2 = 5.$$

The numerator

$$b_n = 5n + 3 + \frac{1}{n}$$

is instead unbounded. Therefore (a_n) is not convergent, by the Algebra of Limits and the usual contradiction argument.

5.1 Limit Tests

Theorem 5.23: Squeeze theorem

Let (a_n) , (b_n) and (c_n) be sequences in \mathbb{R} . Suppose that

 $b_n \leq a_n \leq c_n$, $\forall n \in \mathbb{N}$,

and that

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}c_n=L\,.$$

Then

 $\lim_{n\to\infty}a_n=L\,.$

Example 5.24

Question. Prove that

$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

Solution. For all $n \in \mathbb{N}$ we can estimate

$$-1 \le (-1)^n \le 1 \, .$$

Therefore

$$\frac{-1}{n} \le \frac{(-1)^n}{n} \le \frac{1}{n}, \quad \forall n \in \mathbb{N}$$

Moreover

$$\lim_{n\to\infty}\frac{-1}{n}=-1\cdot 0=0\,,\quad \lim_{n\to\infty}\frac{1}{n}=0\,.$$

By the Squeeze Theorem 5.23 we conclude

$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0.$$

Example 5.25

Question. Prove that

$$\lim_{n \to \infty} \frac{\cos(3n) + 9n^2}{11n^2 + 15\sin(17n)} = \frac{9}{11}$$

Solution. We know that

 $-1 \le \cos(x) \le 1$, $-1 \le \sin(x) \le 1$, $\forall x \in \mathbb{R}$.

Therefore, for all $n \in \mathbb{N}$

 $-1 \le \cos(3n) \le 1$, $-1 \le \sin(17n) \le 1$.

We can use the above to estimate the numerator in the given sequence:

 $-1 + 9n^2 \le \cos(3n) + 9n^2 \le 1 + 9n^2.$ (5.3)

Concerning the denominator, we have

$$11n^2 - 15 \le 11n^2 + 15\sin(17n) \le 11n^2 + 15$$

and therefore

$$\frac{1}{11n^2 + 15} \le \frac{1}{11n^2 + 15\sin(17n)} \le \frac{1}{11n^2 - 15} \,. \tag{5.4}$$

Putting together (5.3)-(5.4) we obtain

$$\frac{-1+9n^2}{11n^2+15} \le \frac{\cos(3n)+9n^2}{11n^2+15\sin(17n)} \le \frac{1+9n^2}{11n^2-15}$$

By the Algebra of Limits we infer

$$\frac{-1+9n^2}{11n^2+15} = \frac{-\frac{1}{n^2}+9}{11+\frac{15}{n^2}} \to \frac{0+9}{11+0} = \frac{9}{11}$$

and

$$\frac{1+9n^2}{11n^2-15} = \frac{\frac{1}{n^2}+9}{11-\frac{15}{n^2}} \to \frac{0+9}{11+0} = \frac{9}{11}.$$

Applying the Squeeze Theorem 5.23 we conclude

1

$$\lim_{n \to \infty} \frac{\cos(3n) + 9n^2}{11n^2 + 15\sin(17n)} = \frac{9}{11}.$$

Theorem 5.26: Geometric Sequence Test

Let $x \in \mathbb{R}$ and let (a_n) be the geometric sequence defined by

 $a_n := x^n$.

We have:

1. If |x| < 1, then

$$\lim_{n\to\infty}a_n=0\,.$$

2. If |x| > 1, then sequence (a_n) is unbounded, and hence divergent.

Example 5.27

We can apply Theorem 5.26 to prove convergence or divergence for the following sequences.

1. We have

$$\left(\frac{1}{2}\right)^n \longrightarrow 0$$

 $\left|\frac{1}{2}\right| = \frac{1}{2} < 1$.

since

2. We have

$$\left(\frac{-1}{2}\right)^n \longrightarrow 0$$

 $\left|\frac{-1}{2}\right| = \frac{1}{2} < 1$.

since

3. The sequence

 $a_n = \left(\frac{-3}{2}\right)^n$

does not converge, since

$$\left|\frac{-3}{2}\right| = \frac{3}{2} > 1$$

4. As $n \to \infty$,

$$\frac{3^n}{(-5)^n} = \left(-\frac{3}{5}\right)^n \longrightarrow 0$$

since

$$\left|-\frac{3}{5}\right| = \frac{3}{5} < 1$$

5. The sequence

$$a_n = \frac{(-7)}{2^{2n}}$$

does not converge, since

$$\frac{(-7)^n}{2^{2n}} = \frac{(-7)^n}{\left(2^2\right)^n} = \left(-\frac{7}{4}\right)^n$$

and

$$\left|-\frac{7}{4}\right| = \frac{7}{4} > 1$$
.

Theorem 5.28: Ratio Test

Let (a_n) be a sequence in \mathbb{R} such that

$$a_n \neq 0$$
, $\forall n \in \mathbb{N}$.

1. Suppose that the following limit exists:

$$L := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \, .$$

Then,

• If L < 1 we have

$$\lim_{n\to\infty}a_n=0$$

• If *L* > 1, the sequence (*a_n*) is unbounded, and hence does not converge.

2. Suppose that there exists $N \in \mathbb{N}$ and L > 1 such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge L, \quad \forall \, n \ge N \, .$$

Then the sequence (a_n) is unbounded, and hence does not converge.

Example 5.29

Question. Let

$$a_n=\frac{3^n}{n!}\,,$$

where we recall that *n*! (pronounced *n* factorial) is defined by

$$n! := n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1.$$

Prove that

$$\lim_{n\to\infty}a_n=0$$

Solution. We have

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\left(\frac{3^{n+1}}{(n+1)!}\right)}{\left(\frac{3^n}{n!}\right)}$$
$$= \frac{3^{n+1}}{3^n} \frac{n!}{(n+1)!}$$
$$= \frac{3 \cdot 3^n}{3^n} \frac{n!}{(n+1)n!}$$
$$= \frac{3}{n+1} \longrightarrow L = 0.$$

Hence, L = 0 < 1 so $a_n \rightarrow 0$ by the Ratio Test in Theorem 5.28.

Example 5.30

Question. Consider the sequence

$$a_n = \frac{n! \cdot 3^n}{\sqrt{(2n)!}} \,.$$

Prove that (a_n) is divergent. **Solution.** We have

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)! \cdot 3^{n+1}}{\sqrt{(2(n+1))!}} \frac{\sqrt{(2n)!}}{n! \cdot 3^n}$$
$$= \frac{(n+1)!}{n!} \cdot \frac{3^{n+1}}{3^n} \cdot \frac{\sqrt{(2n)!}}{\sqrt{(2(n+1))!}}$$

For the first two fractions we have

$$\frac{(n+1)!}{n!} \cdot \frac{3^{n+1}}{3^n} = 3(n+1),$$

while for the third fraction

$$\frac{\sqrt{(2n)!}}{\sqrt{(2(n+1))!}} = \sqrt{\frac{(2n)!}{(2n+2)!}}$$
$$= \sqrt{\frac{(2n)!}{(2n+2)\cdot(2n+1)\cdot(2n)!}}$$
$$= \frac{1}{\sqrt{(2n+1)(2n+2)}}.$$

Therefore, using the Algebra of Limits,

$$\begin{aligned} \left|\frac{a_{n+1}}{a_n}\right| &= \frac{3(n+1)}{\sqrt{(2n+1)(2n+2)}} \\ &= \frac{3n\left(1+\frac{1}{n}\right)}{\sqrt{n^2\left(2+\frac{1}{n}\right)\left(2+\frac{2}{n}\right)}} \\ &= \frac{3\left(1+\frac{1}{n}\right)}{\sqrt{\left(2+\frac{1}{n}\right)\left(2+\frac{2}{n}\right)}} \longrightarrow \frac{3}{\sqrt{4}} = \frac{3}{2} > 1. \end{aligned}$$

By the Ratio Test we conclude that (a_n) is divergent.

Example 5.31

Question. Prove that the following sequence is divergent

$$a_n = \frac{n!}{100^n}$$

Solution. We have

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{100^n}{100^{n+1}} \frac{(n+1)!}{n!} = \frac{n+1}{100} \,.$$

Choose N = 101. Then for all $n \ge N$,

$$\frac{a_{n+1}}{a_n} = \frac{n+1}{100} \\ \ge \frac{N+1}{100} \\ = \frac{101}{100} > 1$$

Hence a_n is divergent by the Ratio Test.

Let (a_n) be a real sequence. We say that:

1. (a_n) is **increasing** if

$$a_n \leq a_{n+1}$$
, $\forall n \geq N$.

2. (a_n) is **decreasing** if

$$a_n \ge a_{n+1}$$
, $\forall n \ge N$.

3. (*a_n*) is **monotone** if it is either increasing or decreasing.

Example 5.33

Question. Prove that the following sequence is increasing

$$a_n=\frac{n-1}{n}\,.$$

Solution. We have

$$a_{n+1} = \frac{n}{n+1} > \frac{n-1}{n} = a_n$$

where the inequality holds because

$$\frac{n}{n+1} > \frac{n-1}{n} \quad \Longleftrightarrow \quad n^2 > (n-1)(n+1)$$
$$\Leftrightarrow \quad n^2 > n^2 - 1$$
$$\Leftrightarrow \quad 0 > -1$$

Example 5.34

Question. Prove that the following sequence is decreasing

$$a_n = \frac{1}{n}$$
.

Solution. We have

$$a_n = \frac{1}{n} > \frac{1}{n+1} = a_{n+1}$$

concluding.

Theorem 5.35: Monotone Convergence Theorem

Let (a_n) be a sequence in \mathbb{R} . Suppose that (a_n) is bounded and monotone. Then (a_n) converges.

Proof

Assume (a_n) is bounded and monotone. Since (a_n) is bounded, the set

$$A := \{a_n : n \in \mathbb{N}\} \subseteq \mathbb{R}$$

is bounded below and above. By the Axiom of Completeness of \mathbb{R} there exist $i, s \in \mathbb{R}$ such that

$$i = \inf A$$
, $s = \sup A$.

We have two cases:

1. (a_n) is increasing: We are going to prove that

$$\lim_{n \to \infty} a_n = s$$

Equivalently, we need to prove that

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \ge N, |a_n - s| < \varepsilon.$$
 (5.5)

Let $\varepsilon > 0$. Since *s* is the smallest upper bound for *A*, this means

$$s - \varepsilon$$

is not an upper bound. Therefore there exists $N \in \mathbb{N}$ such that

$$s - \varepsilon < a_N \,. \tag{5.6}$$

Let $n \ge N$. Since a_n is increasing, we have

$$a_N \le a_n, \quad \forall n \ge N.$$
 (5.7)

Moreover *s* is the supremum of *A*, so that

$$a_n \le s < s + \varepsilon, \quad \forall n \in \mathbb{N}.$$
 (5.8)

Putting together estimates (5.6)-(5.7)-(5.8) we get

$$s - \varepsilon < a_N \le a_n \le s < s + \varepsilon$$
, $\forall n \ge N$.

The above implies

$$s - \varepsilon < a_n < s + \varepsilon, \quad \forall n \ge N,$$

which is equivalent to (5.5).

2. (a_n) is decreasing: With a similar proof, one can show that

 $\lim_{n\to\infty}a_n=i.$

This is left as an exercise.

5.3 Example: Euler's Number

As an application of the Monotone Convergence Theorem we can give a formal definition for the Euler's Number

 $e=2.71828182845904523536\ldots$

Theorem 5.36

Consider the sequence

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

We have that:

- 1. (a_n) is monotone increasing,
- 2. (a_n) is bounded.

In particular (a_n) is convergent.

Proof

Part 1. We prove that (a_n) is increasing

$$a_n \ge a_{n-1}, \quad \forall n \in \mathbb{N},$$

which by definition is equivalent to

$$\left(1+\frac{1}{n}\right)^n \ge \left(1+\frac{1}{n-1}\right)^{n-1}, \quad \forall n \in \mathbb{N}.$$

Summing the fractions we get

$$\left(\frac{n+1}{n}\right)^n \ge \left(\frac{n}{n-1}\right)^{n-1}$$

Multiplying by $((n-1)/n)^n$ we obtain

$$\left(\frac{n-1}{n}\right)^n \left(\frac{n+1}{n}\right)^n \ge \frac{n-1}{n}$$

which simplifies to

$$\left(1-\frac{1}{n^2}\right)^n \ge 1-\frac{1}{n}, \quad \forall n \in \mathbb{N}.$$
(5.9)

Therefore (a_n) is increasing if and only if (5.9) holds. Recall Bernoulli's inequality from Lemma ??: For $x \in \mathbb{R}$, x > -1, it holds

$$(1+x)^n \ge 1+nx$$
, $\forall n \in \mathbb{N}$.

Appliying Bernoulli's inequality with

$$x = -\frac{1}{n^2}$$

yields

$$\left(1 - \frac{1}{n^2}\right)^n \ge 1 + n\left(-\frac{1}{n^2}\right) = 1 - \frac{1}{n^2}$$

which is exactly (5.9). Then (a_n) is increasing. *Part 2.* We have to prove that (a_n) is bounded, that is, that there exists M > 0 such that

$$|a_n| \leq M$$
, $\forall n \in \mathbb{N}$.

To this end, introduce the sequence (b_n) by setting

$$b_n := \left(1 + \frac{1}{n}\right)^{n+1}$$

The sequence (b_n) is decreasing.

To prove (b_n) is decreasing, we need to show that

$$b_{n-1} \ge b_n$$
, $\forall n \in \mathbb{N}$.

By definition of b_n , the above reads

$$\left(1+\frac{1}{n-1}\right)^n \ge \left(1+\frac{1}{n}\right)^{n+1}, \quad \forall n \in \mathbb{N}.$$

Summing the terms inside the brackets, the above is equivalent to

$$\left(\frac{n}{n-1}\right)^n \geq \left(\frac{n+1}{n}\right)^n \left(\frac{n+1}{n}\right)$$

Multiplying by $(n/(n+1))^n$ we get

$$\left(\frac{n^2}{n^2-1}\right)^n \ge \left(\frac{n+1}{n}\right)$$

The above is equivalent to

$$\left(1+\frac{1}{n^2-1}\right)^n \ge \left(1+\frac{1}{n}\right).$$
 (5.10)

Therefore (b_n) is decreasing if and only if (5.10) holds for all $n \in \mathbb{N}$. By choosing

$$x = \frac{1}{n^2 - 1}$$

in Bernoulli's inequality, we obtain

$$\left(1 + \frac{1}{n^2 - 1}\right)^n \ge 1 + n\left(\frac{1}{n^2 - 1}\right)$$
$$= 1 + \frac{n}{n^2 - 1}$$
$$\ge 1 + \frac{1}{n},$$

where in the last inequality we used that

$$\frac{n}{n^2-1} > \frac{1}{n} \,,$$

which holds, being equivalent to $n^2 > n^2 - 1$. We have therefore proven (5.10), and hence (b_n) is decreasing. We now observe that For all $n \in \mathbb{N}$

$$b_n = \left(1 + \frac{1}{n}\right)^{n+1}$$
$$= \left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{n}\right)$$
$$= a_n \left(1 + \frac{1}{n}\right)$$
$$> a_n.$$

Since (a_n) is increasing and (b_n) is decreasing, in particular

$$a_n \ge a_1$$
, $b_n \le b_1$.

Therefore

$$a_1 \leq a_n < b_n \leq b_1$$
, $\forall n \in \mathbb{N}$.

We compute

$$a_1 = 2, \quad b_1 = 4,$$

from which we get

$$2 \le a_n \le 4 \,, \quad \forall \, n \in \mathbb{N} \,.$$

Therefore

$$|a_n| \le 4, \quad \forall \, n \in \mathbb{N}\,,$$

showing that (a_n) is bounded. *Part 3.* The sequence (a_n) is increasing and bounded above. Therefore (a_n) is convergent by the Monotone Convergence Theorem 5.35.

Thanks to Theorem 5.36 we can define the Euler's Number e.

Definition 5.37: Euler's Number

The Euler's number is defined as

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \, .$$

Setting n = 1000 in the formula for (a_n) , we get an approximation of e:

$$e \approx a_{1000} = 2.7169$$
.

5.4 Some important limits

In this section we investigate limits of some sequences to which the Limit Tests do not apply.

Let $x \in \mathbb{R}$, with x > 0. Then

 $\lim_{n\to\infty}\sqrt[n]{x}=1.$

Proof

Step 1. Assume $x \ge 1$. In this case

 $\sqrt[n]{x} \ge 1$.

Define

$$b_n := \sqrt[n]{x} - 1,$$

so that $b_n \ge 0$. By Bernoulli's Inequality we have

$$x = (1 + b_n)^n \ge 1 + nb_n.$$

Therefore

$$0 \le b_n \le \frac{x-1}{n} \,.$$

Since

 $\frac{x-1}{n}\longrightarrow 0\,,$

by the Squeeze Theorem we infer $b_n \rightarrow 0$, and hence

$$\sqrt[n]{x} = 1 + b_n \longrightarrow 1 + 0 = 1$$
,

by the Algebra of Limits. *Step 2.* Assume 0 < x < 1. In this case

 $\frac{1}{x} > 1.$

Therefore

$$\lim_{n\to\infty}\sqrt[n]{1/x}=1.$$

by Step 1. Therefore

$$\sqrt[n]{x} = \frac{1}{\sqrt[n]{1/x}} \longrightarrow \frac{1}{1} = 1$$

by the Algebra of Limits.

Theorem 5.39

Let (a_n) be a sequence such that $a_n \to 0$. Then

 $\sin(a_n) \to 0$, $\cos(a_n) \to 1$.

Proof

Assume that $a_n \rightarrow 0$ and set

 $\varepsilon := \frac{\pi}{2}$.

By the convergence $a_m \to 0$ there exists $N \in \mathbb{N}$ such that

$$|a_n| < \varepsilon = \frac{\pi}{2} \quad \forall n \ge N.$$
 (5.11)

Step 1. We prove that

$$\sin(a_n) \to 0$$
.

By elementary trigonometry we have

$$0 \le |\sin(x)| = \sin|x| \le |x|, \quad \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$

Therefore, since (5.11) holds, we can substitute $x = a_n$ in the above inequality to get

$$0 \le |\sin(a_n)| \le |a_n|, \quad \forall n \ge \mathbb{N}.$$

Since $a_n \to 0$, we also have $|a_n| \to 0$. Therefore $|\sin(a_n)| \to 0$ by the Squeeze Theorem. This immediately implies $\sin(a_n) \to 0$. Step 2. We prove that

$$\cos(a_n) \to 1$$
.

Inverting the relation

$$\cos^2(x) + \sin^2(x) = 1$$

we obtain

$$\cos(x) = \pm \sqrt{1 - \sin^2(x)}.$$

We have that $\cos(x) \ge 0$ for $-\pi/2 \le x \le \pi/2$. Thus

$$\cos(x) = \sqrt{1 - \sin^2(x)}, \quad \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$

Since (5.11) holds, we can set $x = a_n$ in the above inequality and obtain

$$\cos(a_n) = \sqrt{1 - \sin^2(a_n)}, \quad \forall n \ge N.$$

By Step 1 we know that $sin(a_n) \rightarrow 0$. Therefore, by the Algebra of Limits,

$$1 - \sin^2(a_n) \longrightarrow 1 - 0 \cdot 0 = 1.$$

Using Theorem 5.20 we have

$$\cos(a_n) = \sqrt{1 - \sin^2(a_n)} \longrightarrow \sqrt{1} = 1,$$

concluding the proof.

Theorem 5.40

Suppose (a_n) is such that $a_n \to 0$ and

$$a_n \neq 0$$
, $\forall n \in \mathbb{N}$

Then

$$\lim_{n\to\infty}\frac{\sin(a_n)}{a_n}=$$

1.

Proof

The following elementary trigonometric inequality holds:

$$\sin(x) < x < \tan(x), \quad \forall x \in \left[0, \frac{\pi}{2}\right].$$

Note that $\sin x > 0$ for $0 < x < \pi/2$. Therefore we can divide the above inequality by $\sin(x)$ and take the reciprocals to get

$$\cos(x) < \frac{\sin(x)}{x} < 1, \quad \forall x \in \left(0, \frac{\pi}{2}\right].$$

If $-\pi/2 < x < 0$, we can apply the above inequality to -x to obtain

$$\cos(-x) < \frac{\sin(-x)}{-x} < 1$$

Recalling that $\cos(-x) = \cos(x)$ and $\sin(-x) = -\sin(x)$, we get

$$\cos(x) < \frac{\sin(x)}{x} < 1$$
, $\forall x \in \left(-\frac{\pi}{2}, 0\right]$.

Thus

$$\cos(x) < \frac{\sin(x)}{x} < 1, \quad \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\}.$$
 (5.12)

Let

 $\varepsilon := \frac{\pi}{2}$.

Since $a_n \to 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n| < \varepsilon = \frac{\pi}{2} , \quad \forall \, n \ge N$$

Since $a_n \neq 0$ by assumption, the above shows that

$$a_n \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\}, \quad \forall n \ge \mathbb{N}$$

Therefore we can substitute $x = a_n$ into (5.12) to get

$$\cos(a_n) < \frac{\sin(a_n)}{a_n} < 1, \quad \forall n \ge N.$$

We have

$$\cos(a_n) \to 1$$

by Theorem 5.39. By the Squeeze Theorem we conclude that (

$$\lim_{n\to\infty}\frac{\sin(a_n)}{a_n}=1\,.$$

Warning

You might be tempted to apply L'Hôpital's rule (which we did not cover in these Lecture Notes) to compute

$$\lim_{x\to 0}\frac{\sin(x)}{x}$$

This would yield the correct limit

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{(\sin(x))'}{(x)'} = \lim_{x \to 0} \cos(x) = 1.$$

However this is a circular argument, since the derivative of sin(x) at x = 0 is defined as the limit

$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

Theorem 5.41

Suppose
$$(a_n)$$
 is such that $a_n \to 0$ and

$$a_n \neq 0$$
, $\forall n \in \mathbb{N}$.

Then

$$\lim_{n \to \infty} \frac{1 - \cos(a_n)}{(a_n)^2} = \frac{1}{2}, \quad \lim_{n \to \infty} \frac{1 - \cos(a_n)}{a_n} = 0.$$

Proof

Step 1. By Theorem 5.39 and Theorem 5.40, we have

$$\cos(a_n) \to 1$$
, $\frac{\sin(a_n)}{a_n} \to 1$

Therefore

$$\frac{1 - \cos(a_n)}{(a_n)^2} = \frac{1 - \cos(a_n)}{(a_n)^2} \frac{1 + \cos(a_n)}{1 + \cos(a_n)}$$
$$= \frac{1 - \cos^2(a_n)}{(a_n)^2} \frac{1}{1 + \cos(a_n)}$$
$$= \left(\frac{\sin(a_n)}{a_n}\right)^2 \frac{1}{1 + \cos(a_n)} \longrightarrow 1 \cdot \frac{1}{1 + 1} = \frac{1}{2},$$

where in the last line we use the Algebra of Limits. *Step 2.* We have

$$\frac{1-\cos(a_n)}{a_n} = a_n \cdot \frac{1-\cos(a_n)}{(a_n)^2} \longrightarrow 0 \cdot \frac{1}{2} = 0,$$

using Step 1 and the Algebra of Limits.

Example 5.42

Question. Prove that

$$\lim_{n \to \infty} n \sin\left(\frac{1}{n}\right) = 1.$$
 (5.13)

Solution. This is because

$$n\sin\left(\frac{1}{n}\right) = \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} \longrightarrow 1$$

by Theorem 5.40 with $a_n = 1/n$.

Example 5.43

Question. Prove that

$$\lim_{n \to \infty} n^2 \left(1 - \cos\left(\frac{1}{n}\right) \right) = \frac{1}{2}.$$
 (5.14)

Solution. Indeed,

$$n^{2}\left(1-\cos\left(\frac{1}{n}\right)\right) = \frac{1-\cos\left(\frac{1}{n}\right)}{\frac{1}{n^{2}}} \longrightarrow \frac{1}{2},$$

by applying Theorem 5.41 with $a_n = 1/n$.

Example 5.44

Question. Prove that

$$\lim_{n \to \infty} \frac{n\left(1 - \cos\left(\frac{1}{n}\right)\right)}{\sin\left(\frac{1}{n}\right)} = \frac{1}{2}$$

Solution. Using (5.14)-(5.13) and the Algebra of Limits

$$\frac{n\left(1-\cos\left(\frac{1}{n}\right)\right)}{\sin\left(\frac{1}{n}\right)} = \frac{n^2\left(1-\cos\left(\frac{1}{n}\right)\right)}{n\sin\left(\frac{1}{n}\right)}$$
$$\longrightarrow \frac{1/2}{1} = \frac{1}{2}.$$

Example 5.45

Question. Prove that

$$\lim_{n \to \infty} n \cos\left(\frac{2}{n}\right) \sin\left(\frac{2}{n}\right) = 2$$

Solution. We have

$$\cos\left(\frac{2}{n}\right) \longrightarrow 1$$

,

by Theorem 5.39 applied with $a_n = 2/n$. Moreover

$$\frac{\sin\left(\frac{2}{n}\right)}{\frac{2}{n}} \longrightarrow 1,$$

by Theorem 5.40 applied with $a_n = 2/n$. Therefore

$$n\cos\left(\frac{2}{n}\right)\sin\left(\frac{2}{n}\right) = 2\cdot\cos\left(\frac{2}{n}\right)\cdot\frac{\sin\left(\frac{2}{n}\right)}{\frac{2}{n}}$$
$$\longrightarrow 2\cdot1\cdot1 = 2,$$

where we used the Algebra of Limits.

Example 5.46

Question. Prove that

$$\lim_{n \to \infty} \frac{n^2 + 1}{n+1} \sin\left(\frac{1}{n}\right) = 1.$$

Solution. Note that

$$\frac{n^2+1}{n+1}\sin\left(\frac{1}{n}\right) = \left(\frac{1+\frac{1}{n^2}}{1+\frac{1}{n}}\right) \cdot \left(n\sin\left(\frac{1}{n}\right)\right)$$
$$\longrightarrow \frac{1+0}{1+0} \cdot 1 = 1,$$

where we used (5.13) and the Algebra of Limits.

License

Reuse

This work is licensed under CC-BY-NC-ND 4.0

Citation

For attribution, please cite this work as:

Fanzon, Silvio. (2024). *Revision Guide of Numbers, Sequences and Series.* https://www.silviofanzon.com/2024-NSS-Revision/

BibTex citation: