Numbers Sequences and Series

Revision Guide

Dr. Silvio Fanzon

21 Nov 2024



Table of contents

Revision Guide 3
Recommended revision strategy . . . . . . . . .. 3
Checklist . . . . . . e 3

1 Preliminaries 4
L1 SetTheory . . . . . o o 4
1.2 Relations . . . . . e e e e e 6
1.3 Induction . . . . . .. e 8
1.4 Absolutevalue . . . . . . . . e e 9

2 Real Numbers 10
2.0 Flelds . . . . . e e 10
2.2 Supremum and infimum . . . ..o L 12
2.3 Axioms of Real Numbers . . . . . . . . . . . e e 13

231 Inductive sets . . . . . . . L 13

3 Properties of R 15
3.1 Revisiting SupandInf . . . . . . . L 15
3.2 Cardinality . . . . . . 16

4 Complex Numbers 19
41 Thecomplex plane . . . . . . . . 20
4.2 Fundamental Theorem of Algebra . . . . . . . . . . . . e 23
4.3 Solving polynomial equations . . . . . . .. ... 24
4.4 ROOTS . . . L e e e 26

5 SequencesinR 28
51 Limit Tests . . . . . . . o e e e e e 33
5.2  Monotone SeqUENCES . . . . . . . ... e e e e e e e e 35
5.3 Example: Euler’s Number . . . . . . . . . L 36
5.4 Some important limits . . . . . .. Lo 37

License 4
Reuse . . . . o L e 41
Citation . . . . . . . e 41



Revision Guide

Revision Guide document for the module Numbers Se-
quences and Series 400297 2024/25 at the University of Hull.
If you have any question or find any typo, please email me at

S.Fanzon@hull.ac.uk
Full lenght Lecture Notes of the module available at

silviofanzon.com/2024-NSS-Notes

Recommended revision strategy

Make sure you are very comfortable with:

1. The Definitions, Theorems, Proofs, and Examples con-
tained in this Revision Guide

2. The Tutorial and Homework questions

3. The 2023/24 Exam Paper questions.

4. The Checklist below

Checklist

You should be comfortable with the following topics/taks:

Preliminaries

+ Prove that \/p ¢ Q for p a prime number

Complex Numbers

+ Sum, multiplication and division of complex numbers

« Computing the complex conjugate

« Computing the inverse of a complex number

« Find modulus and argument of a complex number

« Compute Cartesian, Trigonometric and Exponential
form of a complex number

« Complex exponential and its properties

« Computing powers of complex numbers

« Solving degree 2 polynomial equations in C

+ Long division of polynomials

« Solving higher degree polynomial equations in C

+ Finding the roots of unity

« Finding the n-th roots of a complex number


mailto: S.Fanzon@hull.ac.uk
https://www.silviofanzon.com/2024-NSS-Notes

l if they contain the same elements.

1 Preliminaries

Theorem 1.1 1.1 Set Theory

The number +/2 does not belong to Q.

Proof
Aassume by contradiction that Proposition 1.3
J2eQ. (1.1) Let A and B be sets. Then
1. Therefore, there exists m,n € IN, n # 0, such that A=B < ACB and BCA.

m_ 2.
n

2. Withouth loss of generality, we can assume that
m and n have no common factors.

3. Square the equation to get

— =2 = m?=2n’. (1.2)

2

Therefore the integer m* is an even number.

4. Since m? is an even number, it follows that also m is

an even number. Then there exists p € IN such that Definition 1.4

m=2p. (1.3) Let Q be a set, and A, C Q a family of subsets, where
5. Substitute (1.3) in (1.2) to get nelN.
m?=2n2 — (2p)? =2m2 — d4p? = 2n? 1. The infinte union of the A, is the set
Dividing both terms by 2, we obtain U A, i={xe€eQ: xe A, foratleastone neN}.
neN

n? =2p°. (1.4)
2. The infinte intersection of the A, is the set
6. We now make a series of observations:
ﬂAn ={xeQ: xeA, forall neN}.

. 2 .
Equation (1.4) says that n“ is even. neN

+ The same argument in Step 4 guarantees that

also n is even.

« Therefore n and m are both even, meaning they
have 2 as common factor.

+ But Step 2 says that n and m have no common
factors. Contradiction

7. Our reasoning has run into a contradiction, stem-
ming from assumption (1.1). Therefore (1.1) is FALSE,
and so

J2¢Q
ending the proof.



Example 1.5
Question. Define Q := N and a family A, by
A,={n,n+1,n+2,n+3,...}, neN.

1. Prove that

U A, =N. (1.5)
neN

2. Prove that
(A =0. (1.6)
neN

Solution.

1. Assume that m € u,A,,. Thenm € A, for at least one
n € IN. Since A, € N, we conclude that m € IN. This

shows
) A, cN.
neN

Conversely, suppose that m € IN. By definition m €
A,,. Hence there exists at least one index n,n = m
in this case, such that m € A,. Then by definition
m € UpenAp, showing that

Nc | A,

nelN
This proves (1.5).

2. Suppose that (1.6) is false, i.e.,

(1A =0.

nelN

This means there exists some m € IN such that m €
NnewAy- Hence, by definition, m € A, for all n € IN.

However m ¢ A, 1, yielding a contradiction. Thus
(1.6) holds.

Example 1.7

Question. Suppose A, B C Q. Prove that
ACB < B°CA".

Solution. Let us prove the above claim:

« First implication = :

Suppose that A C B. We need to show that B¢ C A°.
Hence, assume x € B. By definition this means that
x ¢ B. Now notice that we cannot have that x €
A. Indeed, assume x € A. By assumption we have
A C B, hence x € B. But we had assumed x € B,
contradiction. Therefore it must be that x ¢ A. Thus
B° C AC.

« Second implication < : Note that, for any set,
(A =A.
Hence, by the first implication,

BCCA® = (A)YC(B)Y = ACB.

Proposition 1.8: De Morgan’s Laws
Suppose A, B € Q. Then

(AnB)f = A°u B°, (AuB) = A°n B°.

Definition 1.9
Let Q be a set. The power set of Q is

P(Q) :={A: ACQ}.

Definition 1.6

Let A, B C Q. The complement of A with respect to B is
the set of elements of B which do not belong to A, that is

BNA :={xeQ: xe€Band x ¢ A}.

In particular, the complement of A with respect to Q is
denoted by

A = QNA:={xeQ: x¢A}.

Example 1.10

Question. Compute the power set of

Q={x,y,z}.
Solution. 2(Q) has 23 = 8, and
P(Q) ={0,{x}, {y}, {=}.{x, ¥} (17)
{x.2} {y. 2} {x. y, 23} (1.8)

Definition 1.11

Let A, Bbe sets. The product of A and B s the set of pairs

AxB :={(a,b) : a€ A, beB}.




1.2 Relations

Definition 1.12

Suppose A is a set. A binary relation R on A is a subset

RCAxA.

Definition 1.13: Equivalence relation

A binary relation R is called an equivalence relation if
it satisfies the following properties:

1. Reflexive: For each x € A one has
(x,x) €R,
2. Symmetric: We have
(x,y)eR = (y.x)€R
3. Transitive: We have
(x,y)€R, (y,2) €R = (x,z) €R
If (x, y) € R we write

X~y

and we say that x and y are equivalent.

Example 1.16: Equality is an equivalence relation

Question. The equality defines a binary relation on

QO xQ, via
R:={(x,») €QxQ : x=y}.

1. Prove that R is an equivalence relation.
2. Prove that [x] = {x} and compute Q/R.

Solution.

1. We need to check that R satisfies the 3 properties of
an equivalence relation:

« Reflexive: It holds, since x = x for all x € Q,
« Symmetric: Again x = y if and only if y = x,
+ Transitive: If x = y and y = z then x = z.

Therefore, R is an equivalence relation.

2. The class of equivalence of x € Q is given by

[x] = {x},

that is, this relation is quite trivial, given that each
element of Q can only be related to itself. The quo-
tient space is then

Q/R={lx] : xeQ}={{x}: xeQ}.

Definition 1.14: Equivalence classes

Suppose R is an equivalence relation on A. The equiv-
alence class of an element x € A is the set

[x] :={yeA: y~x}.

The set of equivalence classes of elements of A with re-
spect to the equivalence relation R is denoted by

A/R := A/~ :={[x] : x€A}.

Proposition 1.15
Let ~ be an equivalence relation on A. Then
1. For each x € A we have
[x] =@

2. For all x,y € A it holds

Example 1.17

Question. Let R be the binary relation on the set Q of
rational numbers defined by

X~y &= x—ye”Z.

1. Prove that R is an equivalence relation on Q.
2. Compute [x] for each x € Q.
3. Compute Q/R.

Solution.

1. We have:

 Reflexive: Let x € Q. Thenx—x =0and 0 € Z.
Thus x ~ x.

« Symmetric: If x ~ y then x — y € Z. But then
also
—(x—y)=y-x€Z
and so y ~ x.

« Transitive: Suppose x ~ y and y ~ z. Then

x—y€Zand y—z€Z.




Thus, we have
x—z=(x—-y)+(y—-2)€eZ

showing that x ~ z.

Thus, we have shown that R is an equivalence rela-
tion on Q.

2. Note that

x~y << 3In€Z st y=x+n.

Therefore the equivalence classes with respect to ~
are

[x]={x+n: neZz}.

Each equivalence class has exactly one element in
[0,1) n Q, meaning that:

vx€Q, 3'geQst. 0<g<1andqgelx]. (19)

Indeed: take x € Q arbitrary. Then x € [n,n + 1) for
some n € Z. Setting q := x — n we obtain that
xX=q+n, qelo,1),

proving (1.9). In particular (1.9) implies that for each
x € Q there exists q € [0, 1) n Q such that

3. From Point 2 we conclude that

QO/R={[x] : xeQ}={qeQ: 0<qg<1}.

Definition 1.19: Total order

A binary relation R on A is called a total order relation
if it satisfies the following properties:

1. Partial order: R is a partial order on A.
2. Total: For each x, y € A we have

(x,y) €R or (y,x)€R.

Definition 1.18: Partial order

A binary relation R on A is called a partial order if it
satisfies the following properties:

1. Reflexive: For each x € A one has
(x,x) €R,
2. Antisymmetric: We have
(x,y)eR and (y,x) eR = x=1y
3. Transitive: We have

(x,y)€R, (y,2) R = (x,z) €R

Example 1.20: Set inclusion is a partial order but not
total order

Question. Let Q be a non-empty set and consider its
power set
PQ)={A: ACQ}.

The inclusion defines binary relation on P(Q) x 2(Q),
via

R:={(A,B) € P(Q)x P(Q) : AC B}.

1. Prove that R is an order relation.
2. Prove that R is not a total order.

Solution.

1. Check that R is a partial order relation on 2(Q):

« Reflexive: It holds, since A C A for all A €
P(Q).

+ Antisymmetric: If A C Band B C A, then A =
B.

« Transitive: If A C B and B C C, then, by defini-
tion of inclusion, A C C.

2. In general, R is not a total order. For example con-
sider

Q=1{x,y}.

Thus
P(Q) =1{2, {x}, {y}, {x, y}}.

If we pick A = {x} and B = {y} then An B = @,
meaning that

A¢B, BZA.

This shows R is not a total order.

Example 1.21: Inequality is a total order
Question. Consider the binary relation
R:={(xy) €QxQ: x<y}.

Prove that R is a total order relation.
Solution. We need to check that:




1. Reflexive: It holds, since x < x for all x € Q,
2. Antisymmetric: If x < y and y < x then x = y.

3. Transitive: If x < y and y < z then x < z.

Finally, we halso have that R is a total order on Q, since
for all x, y € Q we have

x<y or y<x.

1.3 Induction

Definition 1.22: Principle of Inducion

Let a(n) be a statement which depends onn € IN. Suppose
that

1. a(1) is true, and
2. Whenever a(n) is true, then a(n + 1) is true.

Then a(n) is true for all n € IN.

where in the first equality we used that (1.10) holds
for n = k. We have proven that

_ k+1D)(k+2)

S(k+1) >

The RHS in the above expression is exactly the RHS
of (1.10) computed at n = k + 1. Therefore, we have
shown that formula (1.10) holds for n = k + 1.

By the Principle of Induction, we conclude that (1.10)
holds for all n € IN.

Example 1.23: Formula for summing first n natural
numbers

Question. Prove by induction that the following formula
holds for all n € IN:

n(n+1)

1+2+3+...+(n—-1)+n= (1.10)

Solution. Define
Sn)=1+2+...+n.

This way the formula at (1.10) is equivalent to

S(n) = ”(”; D ynen.

1. It is immediate to check that (1.10) holds for n = 1.
2. Suppose (1.10) holds for n = k. Then

Sk+1)=1+..+k+(k+1) (1.11)
=S(k)+k+1) (112)
= kk+1) +(k+1) (1.13)
k(k+1D)+2k+1)
= > (114)
(k+1)(k+2)
== (115)
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Example 1.24: Bernoulli’s inequality

Question. Let x € R with x > —1. Bernoulli’s inequality
states that

1+x)">1+nx, vVneNlN. (1.16)

Prove Bernoulli’s inequality by induction.
Solution. Let x € R, x > —1. We prove the statement by
induction:

+ Base case: (1.16) holds with equality when n = 1.

+ Induction hypothesis: Let k € IN and suppose that
(1.16) holds for n = k, i.e.,

1+ x)*>1+kx.
Then

1+ 0 = 1+ 0%1 + x)
> 1+ kx)(1+x)
=1+ kx + x + kx?
>1+(k+ 1x,

where we used that kx> > 0. Then (1.16) holds for
n=k+1.

By induction we conclude (1.16).




1.4 Absolute value

Definition 1.25: Absolute value

For x € R we define its absolute value as the quantity

x if x>0
x| =

-x ifx<0
Proposition 1.26
For all x € R they hold:
1 |x| > 0.
2. |x| = 0 if and only if x = 0.
3. |x|=|-x|.

Lemma 1.27
Let x,y € R. Then

X<y & -y<x<y.

Corollary 1.28
Let x,y € R. Then

x| <y & —-y<x<y.

Theorem 1.29: Triangle inequality
For every x, y € R we have

llxl = Iyll < lx + yl < [xl + [y (117)

Proposition 1.30
For any x, y € Rit holds

llcl = ¥l < Jxe =yl < x| + Iyl (1.18)
Moreover for any x, y, z € R it holds

=yl <lx—zl+]z—yl.




2 Real Numbers

2.1 Fields

Definition 2.1: Binary operation

A binary operation on a set K is a function
o: KxK—>K

which maps the ordered pair (x, y) into x o y.

Definition 2.2

Let K be aset and » : K x K — K be a binary operation
on K. We say that:

1. ° is commutative if

Xey=yox, Vx,y€K

2. o is associative if

(xoy)ez=x0(yez), Vx,y,z€K

3. An element e € K is called neutral element of - if

Xoe=eox=x, Vxe€eK

4. Let e be a neutral element of o and let x € K. An
element y € K is called an inverse of x with respect
to o if

Xey=yex=e.

Example 2.3

Question. Let K = {0, 1} be a set with binary operation o
defined by the table

—_ O| o
S RO
S R

1. Is e commutative? Justify your answer.

2. Is o associative? Justify your answer.
Solution.

1. We have

10

and therefore
0cl1#100.

showing that - is not commutative.

2. We have
(001)e1=101=0,
while
00(101)=000=1,
so that

(001)o1#00(101).

Thus, ° is not associative.

Definition 2.4: Field

Let K be a set with binary operations of addition

+:KxK—->K, (x,y)»x+y

and multiplication

-t KxK—->K, (xy)x-y=xy.

We call the triple (K, +, ) a field if:
1. The addition + satisfies: Vx,y,z € K
+ (A1) Commutativity and Associativity:
X+y=y+x
x+y)+z=x+(y+2)

« (A2) Additive Identity: There exists a neu-
tral element in K for +, which we call 0. It
holds:

x+0=0+x=x

« (A3) Additive Inverse: There exists an in-
verse of x with respect to +. We call this el-
ement the additive inverse of x and denote it
by —x. It holds

x+(x)=(x)+x=0
2. The multiplication - satisifes: Vx,y,z € K
« (M1) Commutativity and Associativity:
X y=yx
x-y)-z=x-(y-2)




+ (M2) Multiplicative Identity: There exists a
neutral element in K for -, which we call 1. It
holds:

+ (M3) Multiplicative Inverse: If x # 0 there
exists an inverse of x with respect to .. We call
this element the multiplicative inverse of x
and denote it by x1. It holds

3. The operations + and - are related by

+ (AM) Distributive Property: Vx,y,z € K

x-(y+2)=(x-y)+ 2.

Theorem 2.5

Consider the sets IN, Z, Q with the usual operations + and
-. We have:

« (N, +,-) is not a field.
e (Z,+,") is not a field.

« (Q,+,-)is a field.

Theorem 2.6

Let K with + and - defined by

=l
==}
O = | =
= O

o oo
—_ O R

Then (K, +,-) is a field.

Proposition 2.7:
inverses

Uniqueness of neutral elements and

Let (K, +, ) be a field. Then

1. There is a unique element in K with the property of
0.

2. There is a unique element in K with the property of
1.

3. For all x € K there is a unique additive inverse —x.

4. For all x € K, x # 0, there is a unique multiplicative

inverse x 1.
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Proof

1. Suppose that 0 € K and 0 € K are both neutral ele-
ment of +, that is, they both satisfy (A2). Then

0+0=0
since 0 is a neutral element for +. Moreover
0+0=0

since 0 is a neutral element for +. By commutativity
of +, see property (A1), we have

0=0+0=0+0=0,

showing that 0 = 0. Hence the neutral element for
+ is unique.

2. Exercise.

3. Let x € K and suppose that y,y € K are both ad-
ditive inverses of x, that is, they both satisfy (A3).
Therefore

x+y=0

since y is an additive inverse of x and

x+y=0

since y is an additive inverse of x. Therefore we can
use commutativity and associativity and of +, see
property (A1), and the fact that 0 is the neutral el-
ement of +, to infer

y=y+0=y+(x+y)
=(y+x0)+y=Ex+y)+¥y
=0+jy=7,

concluding that y = y. Thus there is a unique addi-
tive inverse of x, and

y=y=-x,

with —x the element from property (A3).
4. Exercise.

Definition 2.8

Let K be a set with binary operations + and -, and with
an order relation <. We call (K, +,-, <) an ordered field
if:
1. (K,+,)is afield
2. There < is of total order on K: Vx,y,z € K
+ (O1) Reflexivity:




+ (O2) Antisymmetry:
x<yand y<x = x=y
« (O3) Transitivity:
x<y and y<z = x=z
« (O4) Total order:
x<y o y<x

3. The operations + and -, and the total order <, are
related by the following properties: Vx,y,z € K

+ (AM) Distributive: Relates addition and mul-
tiplication via

x-(y+z)=x-y+x-z

+ (AO) Relates addition and order with the re-
quirement:

x<y = x+z<y+z

+ (MO) Relates multiplication and order with the
requirement:

x>20,y>20 = x-y2>0

Theorem 2.9

(Q, +,+, <) is an ordered field.

2.2 Supremum and infimum

Definition 2.10:
mum, maximum

Upper bound, bounded above, supre-

Let A C K:

1. We say that b € K is an upper bound for A if

a<b, VaceA.

2. We say that A is bounded above if there exists and
upper bound b € K for A.

3. We say that s € K is the least upper bound or
supremum of A if:

« sis an upper bound for A,
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« s is the smallest upper bound of A, that is,
If b € K is upper bound for A then s <b.
If it exists, the supremum is denoted by
s=sup A.
4. Let A C K. We say that M € K is the maximum of

Aif:
MeA and a< M,VaeA.

If it exists, we denote the maximum by

M =maxA.

Remark 2.11

Note that if a set A C K in NOT bounded above, then the
supremum does not exist, as there are no upper bounds
of A.

Proposition 2.12: Relationship between Max and Sup

Let A C K. If the maximum of A exists, then also the
supremum exists, and

sup A =maxA.

Definition 2.13:
mum, minimum

Upper bound, bounded below, infi-

Let A C K:
1. We say that! € K is a lower bound for A if

[<a, VaceA.

2. We say that A is bounded below if there exists a
lower bound [ € K for A.

3. We say thati € K is the greatest lower bound or
infimum of A if:

« iis alower bound for A,
« iis the largest lower bound of A, that is,

If I € K is alower bound for A then [ <i.
If it exists, the infimum is denoted by
i=infA.
4. We say that m € K is the minimum of A if:

meA and m<a,Va€eA.




If it exists, we denote the minimum by

m=minA.

Proposition 2.14

Let A C K. If the minimum of A exists, then also the
infimum exists, and

infA=minA.

Proposition 2.15
Let A C K. If inf A and sup A exist, then

infA<a<supA, VacA.

Proposition 2.16: Relationship between sup and inf
Let A C K. Define

—A:

{—a : ae A}l
They hold
1. If sup A exists, then inf A exists and
inf(—A) = —sup A.

2. If inf A exists, then sup A exists and

sup(—A) = —inf A.

2.3 Axioms of Real Numbers

Definition 2.17: Completeness

Let (K, +,-, <) be an ordered field. We say that K is com-
plete if it holds the property:

+ (AC) For every A C K non-empty and bounded
above
supAeK.

Theorem 2.18

Q is not complete. In particular, there exists a set A C Q
such that

» Ais non-empty,
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« A is bounded above,
« sup A does not exist in Q.

Proposition 2.19

Tet (K. +. - <) be a comnlete ordered field. Sunnose that
Definition 2.20: System of Real Numbers R

A system of Real Numbers is a set R with two operations
+ and -, and a total order relation <, such that

e (R, +,-, <) is an ordered field

+ R sastisfies the Axiom of Completeness

2.3.1 Inductive sets

Definition 2.21: Inductive set

Let S € R. We say that S is an inductive set if they are
satisfied:

Example 2.22
Question. Prove the following:

1. R is an inductive set.

2. The set A = {0, 1} is not an inductive set.
Solution.

1. We have that 1 € R by axiom (M2). Moreover (x +
1) € R for every x € R, by definition of sum +.

| | o~ YY~Lacra 1~ A et 1 0 1N A A

PR




Proposition 2.23

Let ./ be a collection of inductive subsets of R. Then

S:zﬂM

Mel

is an inductive subset of R.

Definition 2.24: Set of Natural Numbers

Let  be the collection of all inductive subsets of R. We
define the set of natural numbers in R as

N:= (] M.

Me

Proposition 2.25: INy is the smallest inductive subset

of R

Let C C R be an inductive subset. Then
NCC.

In other words, IN is the smallest inductive set in R.

Theorem 2.26

Let x € IN. Then

14



3 Properties of R

Theorem 3.1: Archimedean Property
Let x € R be given. Then:
1. There exists n € IN such that

n>x.

2. Suppose in addition that x > 0. There exists n € IN
such that

1
-<x.
n

Theorem 3.2:
mulation)

Archimedean Property (Alternative for-

Let x,y € R, with 0 < x < y. There exists n € IN such that

nx>y.

Theorem 3.3: Nested Interval Property
For each n € IN assume given a closed interval
L :=la,b,]={x€R: a,<x<b,}.

Suppose that the intervals are nested, that is,

oL, ¥YneN.
Then
ﬂ L #0. (3.1)
n=1
Example 3.4

Question. Consider the open intervals

o)

L :

These are clearly nested

I,oLy, VYneNlN.
Prove that
(h=0. (3.2)
n=1
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Solution. Suppose by contradiction that the intersection
is non-empty. Then there exists x € IN such that

x€l,, vnelN.

By definition of I, the above reads

O<x<l, vneN. (3.3)
n

Since x > 0, by the Archimedean Property in Theorem
3.1 Point 2, there exists ny € IN such that

1
0<—<x.
Ny

The above contradicts (3.3). Therefore (3.2) holds.

3.1 Revisiting Sup and Inf

Proposition 3.5: Characterization of Supremum

Let A C R be a non-empty set. Suppose that s € R is an
upper bound for A. They are equivalent:

1. s=supA
2. For every ¢ > 0 there exists x € A such that

s—e<x.

Proposition 3.6: Characterization of Infimum

Let A C R be a non-empty set. Suppose thati € Ris a
lower bound for A. They are equivalent:

1. i=infA
2. For every ¢ € R, with ¢ > 0, there exists x € A such
that
x<i+e.

Proposition 3.7
Leta,b € Rwitha <b. Let

A:=(b)={xeR: a<x<b}.




Then

infA=a, supA=0>.

Corollary 3.8
Leta,b € Rwitha <b. Let
A:=(ab)={xeR: a<x<b}.

Then min A and max A do not exist.

Corollary 3.9

Leta,b € Rwitha < b. Let

A:=[ab)={xeR: a<x<b}.
Then
minA =infA=a, supA=b,
max A does not exist.
Proposition 3.10
Define the set
A= {1 ne JN} .
n
Then
infA=0, supA=maxA=1.

Proof
Part 1. We have

1 <1, vneN.

n

Therefore 1 is an upper bound for A. Since 1 € A, by
definition of maximum we conclude that

maxA=1.

Since the maximum exists, we conclude that also the
supremum exists, and

supA=maxA=1.
Part 2. We have

Iso,
n

vneN,

showing that 0 is a lower bound for A. Suppose by contra-
diction that 0 is not the infimum. Therefore 0 is not the
largest lower bound. Then there exists ¢ € R such that:
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« ¢1is alower bound for A, that is,

e<l wneN, (3-4)
n

« ¢islarger than 0:
0<e.

As ¢ > 0, by the Archimedean Property there exists ny €
N such that

1
0< —<e.
ny

This contradicts (3.4). Thus 0 is the largest lower bound
of A, that is, 0 = inf A.

Part 3. We have that min A does not exist. Indeed suppose
by contradiction that min A exists. Then

min A = infA.

As inf A = 0 by Part 2, we conclude minA = 0. As
min A € A, we obtain 0 € A, which is a contradiction.

3.2 Cardinality

Definition 3.11:
countable

Cardinality, Finite, Countable, Un-
Let X be a set. The cardinality of X is the number of
elements in X. We denote the cardinality of X by

|X| :=# of elementsin X .
Further, we say that:

1. X is finite if there exists a natural number n € IN
and a bijection

f:{12..,nf->X.

In particular
IX|=n.

2. X is countable if there exists a bijection
f:N->X.
In this case we denote the cardinality of X by

|1X] = INJ.

3. X is uncountable if X is neither finite, nor count-
able.




Proposition 3.12

Let X be a countable set and A C X. Then either A is
finite or countable.

Example 3.13

Question. Prove that X = {a, b, ¢} is finite.
Solution. SetY = {1,2,3}. The function f: X —» Y
defined by

f=a, f@)=b, fB)=c,

is bijective. Therefore X is finite, with |X]| = 3.

Example 3.14

Question. Prove that the set of natural numbers N is
countable.
Solution. The function f : X — N defined by

fn) :=n,

is bijective. Therefore X = IN is countable.

Example 3.15
Question. Let X be the set of even numbers
X={2n: neN}.

Prove that X is countable.
Solution. Define the map f: IN — X by

f(n) :=2n.
We have that:

1. f is injective, because

fm)=f(k) = 2m=2k m=k.

2. f is surjective: Suppose that m € X. By definition of
X, there exists n € IN such that m = 2n. Therefore,

f(n)=m.

We have shown that f is bijective. Thus, X is countable.

Example 3.16

Question. Prove that the set of integers Z is countable.

17

Solution. Define f : N — Z by

g if n even
FW=Tne 1 e
For example
flo=o0, f(=-1, f@2)=1, f(B)=-2,
f@=2, fGG)=-3, f6)=3, f(7)=—4.
We have:

1. f is injective: Indeed, suppose that m = n. If n and
m are both even or both odd we have, respectively

flm) =2 = 2 = f(n)
flm) = =T 2 =T = ().

If instead m is even and n is odd, we get

n+

= f(m).

flm) = #

since the LHS is positive and the RHS is negative.
The case when m is odd and n even is similar.

2. f is surjective: Let z € Z. If z > 0, thenm := 2z
belongs to N, is even, and
fm)=f(2z) =z.
If instead z < 0, then m := —2z — 1 belongs to NN, is

odd, and
fam)= f(=2z=1) =z.

Therefore f is bijective, showing that Z is countable.

Proposition 3.17

Let the set A, be countable for all n € IN. Define

A= A,.

nelN

Then A is countable.

Theorem 3.18: Q is countable

The set of rational numbers Q is countable.




Theorem 3.19: R is uncountable

The set of Real Numbers R is uncountable.

Theorem 3.20
The set of irrational numbers
J :=R\Q

is uncountable.

Proof

We know that R in uncountable and Q is countable. Sup-
pose by contradiction that .# is countable. Then

QuJs

is countable by Proposition 3.17, being union of countable
sets. Since by definition

R=Qu.7,

we conclude that R is countable. Contradiction.
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4 Complex Numbers

Definition 4.1: Complex Numbers
The set of complex numbers C is defined as
C:=R+iR :={x+iy : x,y €R}.
For a complex number
z=x+iyeC
we say that
+ x is the real part of z, and denote it by
x = Re(z)
+ yis the imaginary part of z, and denote it by
y = Im(2)
We say that

« If Rez = 0 then z is a purely imaginary number.

Solution. Using the definition we compute

z-w=(-2+30)-(1-1i)
=(-2-(-3)+@2+3)i
=1+5i.

Alternatively, we can proceed formally: We just need to
recall that i has to be replaced with —1:

z-w=(-24+3)-(1-1)
= —2+2i + 3i — 3%
=(=2+3)+(@2+3)i
=1+ 5i.

o If Imz = 0 then z is a real number.

Definition 4.2: Addition and multiplication in C
Let 21,29 € C, so that
Z1=x1+iy1, 2y =Xy +iy,
for some xy, x3, y1, ¥2 € R:
1. The sum of z; and z, is
zi+z o= (g +20) +i(y + ) -

2. The multiplication of z; and z, is

zi 2z = (X =y y) Hilx - yp + X2 31) s

Proposition 4.4: Additive inverse in C

The neutral element of addition in C is the number
0:=0+0i.

For any z = x + iy € C, the unique additive inverse is

given by
-z 1= —=x—1iy.

Proposition 4.5: Multiplicative inverse in C
The neutral element of multiplication in C is the number
1:=1+0:.

For any z = x + iy € C, the unique multiplicative inverse
is given by

1 X 4

z = +1 .
x2+y2 x2+y2

Example 4.3
Question. Compute zw, where

z=-24+3i, w=1-1i.

Proof

It is immediate to check that 1 is the neutral element of
multiplication in C. For the remaining part of the state-
ment, set
- x i Yy

X242 X2+ 2 :

w




We need to check thatz-w =1

. .y
z-w=(x+1iy)- +1
) (x2+y2 x2+y2)
:< x* _y-(—y)>+l.(x-(—y) Xy )
52 +y2 x2+y2 52 +y2 x2+y2
=1,

so indeed z71 = w.

Example 4.6

Question. Let z = 3 + 2i. Compute z L.
Solution. By the formula in Propostion 4.5 we immedi-
ately get

3 —2

-1 .
z = + = —
32422 32422 13

- —i
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Alternatively, we can proceed formally:

3+ 2i)71
( ) 3+ 2i

1 3-2i
3+2i3—2i
3—2i
32 422
3 2

___l"

1313

and obtain the same result.

Theorem 4.7

(C,+,) is a field.

Example 4.8

Question. Let w = 1 +iand z = 3 —i. Compute %
Solution. We compute w/z using the two options we
have:

1. Using the formula for the inverse from Proposition
4.5 we compute

z 1= X +i Y
x2 4+ y2 x2 + y2
_ 3 -t
32412 32412
3.1
10 10

and therefore

Yeow 2!
z
3 1
=+ (S + 1)
( ) 10 10
(3 1) (1 3).
=\ — 4+ =i
10 10 10 10
2 4.
= — + —i
10 10
1,2,
=—+=i
5 5

2. We proceed formally, using the multiplication by 1
trick. We have

1+1i
3—1i
1+i3+1

3—i3+i
3—1+(G+1)i
32412

w
z

1,2,
== 4 =i
5 5
Definition 4.9: Complex conjugate

Let z = x + iy. We call the complex conjugate of z,
denoted by z, the complex number

Z=x-1y.
Theorem 4.10
For all z, z; € C it holds:
* Z + Z9 = Z_l + Z_z

© 212 =21"2

4.1 The complex plane

Definition 4.11: Modulus

The modulus of a complex number z = x + iy is defined

by
2| 1= %%+ y2.
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Definition 4.12: Distance in C

Given z;, z, € C, we define the distance between z; and

Z, as the quantity
|21 — 2o -

Theorem 4.13

Given z;,z5 € C, we have

21 — 22| = \/(x1 —x)% + (v — ;).

Example 4.14

Question. Compute the distance between
z=2—-4i, w=-5+41.

Solution. The distance is

|z —w| = (2 —4i) — (=5 + Q)|
= |7 — 5i
=74

Theorem 4.15
Let z,2z{,z5 € C. Then
L |z1 - 25| = |z1] |z
2. |Z" = |z|" foralln € N

3. z-Z = |z?

Theorem 4.16: Triangle inequality in C
Forall x,y,z € C,
L x4yl < Jxf+ [yl

2. [x =zl <|x—y|l+|y—2

Definition 4.17: Argument

Let z € C. The angle 0 between the line connecting the
origin and z and the positive real axis is called the argu-

ment of z, and is denoted by

0 :=arg(z).
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Example 4.18

We have the following arguments:

arg(1) =0 arg(i) = %

arg(-1) =nx arg(—i) = —%

arg(1+1i) = in arg(—1—1i) = —Zﬂ'

Theorem 4.19: Polar coordinates
Let z € C with z = x + iy and z # 0. Then
x=pcos(@), y=psin(0),

where

p =gl = \x%2+y%, 6 :=arg(z).

Definition 4.20: Trigonometric form
Let z € C. The trigonometric form of z is
z = |z|[cos(0) +isin(0)] ,

where 0 = arg(z).

Example 4.21

Question. Suppose that z € C has polar coordinates
3
p= V8, 0="2r.
4
Therefore, the trigonometric form of z is

=8 oo () w15 (31)]

Write z in cartesian form.
Solution. We have

x = pcos(f) = V8 cos (Zn> = _.8.
y = psin(f) = Jgsin(%n) =8 = =2.
Therefore, the cartesian form of z is

zZ=x+iy=-2+2i.




Corollary 4.22: Computing arg(z)

Let z € C with z = x + iy and z # 0. Then

(arctan (%) ifx>0
arctan(%)+7r ifx<0and y>0
arg(z) = 1 arctan(z) -r  ifx<0and y<0
% . ifx=0and y>0
—% ifx=0and y<0

where arctan is the inverse of tan.

Example 4.23

Question. Compute the arguments of the complex num-
bers

z=3+4i, zZ=3-4i,

—z=-3+4i, =-3—-4i.

Solution. Using the formula for arg in Corollary 4.22 we
have

arg(3 + 4i) = arctan

W |

arg(3 — 4i) = arctan

)= -wan({

4
arg(—3 + 4i) = arctan ) + 7 = —arctan (3) + 7

arg(—3 — 4i) = arctan

(
(-
(-
(5)-

~— WI»&L}DI»& ~—

W s

Theorem 4.24: Euler’s identity
For all 8 € R it holds

¢ = cos(0) + isin(6).

Theorem 4.25

For all 8 € R it holds

‘eie‘ =1.

Theorem 4.26

Let z € C with z = x + iy and z # 0. Then
2= pe?,

where

x? +y2,

=z = 0 :=arg(z).
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Definition 4.27: Exponential form
The exponential form of a complex number z € C is

7= peiG = || eiarg(z) ]

Example 4.28
Question. Write the number
z=-2+2i

in exponential form.
Solution. From Example 4.21 we know that z = —2 + 2i
can be written in trigonometric form as

= [oos (2x) 15in (24)].

By Euler’s identity we hence obtain the exponential form

.3
z =8e's"

Remark 4.29: Periodicity of exponential

For all k € Z we have

ol — i(0+27K)

(4.1)

meaning that the complex exponential is 27-periodic.

Proposition 4.30

Let z, z1, z; € C and suppose that

7 = pei9 .z =p ei91 zy = pzeigz ‘
We have

Z1°2y = plPZei(91+92) . = pnelnﬁ
for alln € IN.

Example 4.31

Question. Compute (—2 + 2i)*.
Solution. We have two possibilities:




1. Use the binomial theorem:

(—2+2)* =(-2)*+ ( ;1 )(—2)3 20+ ( ; )(—z)2 (2

+( ; )(—2)-(2i)3 + (20

=16—4-8-2i—6-4-4+4-2-8i+16
=16 —64i — 96 + 64i + 16 = —64.

A much simpler calculation is possible by using the
exponential form: We know that

.3
—2+2i = /8e'"
by Example 4.28. Hence
3 4 .
(-2 +2i)* = ( 8e‘2”) = 8%P7 = 64,
where we used that

3T = " = cos(n) +isin(r) = —1

by 2z periodicity of ¢ and Euler’s identity.

Definition 4.32: Complex exponential

The complex exponential of z € C is defined as

ef =|zle?, 0= arg(z).
Theorem 4.33
Let z,w € C. Then
VW = gZeW | (&)W = 2V, (4.2)
Example 4.34
Question. Compute 7.
Solution. We know that
=1, arg(i)= %

Hence we can write i in exponential form
ST
. . ] 1=
i = lilet2re® = ¢'z |

Therefore

)

~
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4.2 Fundamental Theorem of Algebra

Theorem 4.35: Fundamental theorem of algebra

Let p,(z) be a polynomial of degree n with complex coef-
ficients, i.e.,

Pn(2) = @y 2" + ap_12" L+ 4 ayz + ay,

for some coefficients a,,...,a; € C with a, # 0. There
exist
Z1,..,2, €C

solutions to the polynomial equation

(D) =a, 2" +ap_ 12" P+ taqztay=0. (4.3
In particular, p, factorizes as
m@=a,(z-2)(z-2)(z-2z).  (44)
Example 4.36
Question. Find all the complex solutions to
2 =-1 (4.5)

2:

Solution. The equation z“ = —1 is equivalent to

p(z)=0, pz):=z2+1.

Since p has degree n = 2, the Fundamental Theorem of
Algebra tells us that there are two solutions to (4.5). We
have already seen that these two solutions are z = i and
z = —i. Then p factorizes as

p(2)=22+1=(z—i)z+i).

Example 4.37

Question. Find all the complex solutions to
#-1=0.

Solution The associated polynomial equation is

p(2)=0, p):=zt-1.

Since p has degree n = 4, the Fundamental Theorem of
Algebra tells us that there are 4 solutions to (4.6). Let us
find such solutions. We use the well known identity

az—

> =(+b)a—b), VabeR,

to factorize p. We get:

p(z) =(z*—1) =+ 1" -1).




We know that
Z2+1=0

has solutions z = +i. Instead

Z2-1=0

has solutions x = +1. Hence, the four solutions of (4.6)
are given by
—1,i,

z=1, —i,

and p factorizes as

p(2)=2"-1=(-1DEz+1)(z-i)(z+i).

Definition 4.38
Suppose that the polynomial p, factorizes as
() = an(z — 21)"1(z = 2)2 - (2 = 2
with a, # 0, z(,...,2, € Cand ky,....,k, € N, k; > 1. In
this case p, has degree

m
n=ki+..tky= Y k.
i=1

Note that z; is solves the equation

Pn(Z) =0

exactly k; times. We call k; the multiplicity of the solu-
tion z;.

Example 4.39
The equation
z-D(z-2>%z+i’=0
has 6 solutions:
« z = 1 with multiplicity 1

« z = 2 with multiplicity 2
+ z = —i with multiplicity 3
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4.3 Solving polynomial equations

Proposition 4.40: Quadratic formula
Let a,b,c € R,a # 0 and consider the equation

ax’ +bx+c=0. (4.7)

Define

A :=b%>—4daceR.

The following hold:

1. If A > 0 then (4.7) has two distinct real solutions
z1, 25 € R given by

_—b-VA

2a

_—b+VA

z
2 2a

21

. If A = 0 then (4.7) has one real solution z € R with
multiplicity 2. Such solution is given by

222122225.

3. If A < 0then (4.7) has two distinct complex solutions
21,2, € C given by
—b—iN-A —b+ iV-A
Zl = Zz =,
2a 2a

where v—A € R, since —A > 0.
In all cases, the polynomial at (4.7) factorizes as

az? +bz+c=alz—z)(z—-2).

Example 4.41

Question. Solve the following equations:

1. 322-6z+2=0
2. 422 —8z4+4=0
3. 22 +2z2+3=0

Solution.
1. We have that
A=(—6)%—-4-3-2=12>0

Therefore the equation has two distinct real solu-
tions, given by

L= —(—6) +12 _ 612 _ 3
2-3 6 3
In particular we have the factorization
V3 V3

-1 - —

)

z—1+—

7).

322—6z+2:3(z




2. We have that
A=(-8°—-4-4-4=0.

Therefore there exists one solution with multiplicity
2. This is given by

Zzﬂzl.
2-4

In particular we have the factorization

422 —8x+4=4(z—1)%.

3. We have
A=22-4.1-3=-8<0.

Therefore there are two complex solutions given by

z=_22;;\/§=—1:|:i\/§.

In particular we have the factorization

22 +22+3=(+1-iW2)(z+1+i2).

Proposition 4.42: Quadratic formula with complex co-
efficients

Leta,b,c € C,a = 0. The two solutions to
az® +bz+c=0

are given by

-b+ S b+ S,
zl = 5 22 = 5
2a 2a

where S; and S, are the two solutions to

Z2=A, A :=b*—4ac.

Example 4.43

Question Find all the solutions to

%zz—(3+i)z+(4—i):0. (4.8)

Solution. We have

A:(—(3+i))2—4-%-(4—i)

=8+6i—8+2i
=8i.
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Therefore A € C. We have to find solutions S; and S, to
the equation

22 =N\ =8i. (4.9)

We look for solutions of the form z = a + ib. Then we
must have that

z? = (a+ib)? = a® — b + 2abi = 8i.

Thus

a®—-b2=0, 2ab=38.

From the first equation we conclude that |a| = |b|. From
the second equation we have that ab = 4, and therefore a
and b must have the same sign. Hence a = b, and

20b=8 = a=b=4+2.
From this we conclude that the solutions to (4.9) are
S =2+2i, S,=-2-2i.

Hence the solutions to (4.8) are

3+i+S
z1=—11=3+i+51
2.3
=34+i+2+2i=5+3i,
and
3+i+ S
Zy= 2 =34+i+85,
9.1

2
=3+i—-2-2i=1-1i.

In particular, the given polynomial factorizes as

%zz -B+iz+@-i)= %(Z — 2z~ 2)

=%(z—5—3i)(z—1+i).

Example 4.44
Question. Consider the equation
22 —722+62=0.

1. Check whether z = 0, 1, —1 are solutions.
2. Using your answer from Point 1, and polynomial di-
vision, find all the solutions.

Solution.

1. By direct inspection we see that z = 0 and z = 1 are
solutions.




2. Since z = 0 is a solution, we can factorize
23—722+6z:z(z2—7z+6) .

We could now use the quadratic formula on the term
22 —7z+ 6 to find the remaining two roots. However,
we have already observed that z = 1 is a solution.
Therefore z—1 divides z? — 7z +6. Using polynomial
long division, we find that

22 —72+6 _
z—1

z—6.
Therefore the last solution is z = 6, and
Example 4.45
Question. Find all the complex solutions to
2 —7z+6=0.

Solution. It is easy to see z = 1 is a solution. This means
that z — 1 divides z> — 7z + 6. By using polynomial long
division, we compute that

23—7z+6_
z—1

Z2+z-6.
We are now left to solve
Z2+z-6=0.

Using the quadratic formula, we see that the above is
solved by z = 2 and z = —3. Therefore the given poly-
nomial factorizes as

22—-7z+6=(z-1)(z-2)(z+3).

4.4 Roots
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Theorem 4.46
Let n € IN and consider the equation
Z'=1.

(4.10)

All the n solutions to (4.10) are given by
Zr = exp(i@) , k=0,....n—1,
n

where exp(x) denotes e*.

Definition 4.47

The n solutions to
=1

are called the roots of unity.

Example 4.48
Question. Find all the solutions to
zt=1.

Solution. The 4 solutions are given by

Note that for k = 4 we would again get the solution z =
e = 1.

Example 4.49
Question. Find all the solutions to
2=1.

Solution. The 3 solutions are given by

(.27rk>
Zj. = €Xp IT 5

for k =0, 1,2. We compute:

.2 - 4m

1 1 1
2p=€0=1, z =¢€3, z,=¢3.

We can write z; and z, in cartesian form:

i2z 2 . (2 1 3.
z;=¢3 =cos<—”>+ism<—ﬂ>=——+£l
3 3 2 2




and

i 4 .. (4r 1 3.
Zy =€ 3 =cos ey +isin ey =—=——.

Theorem 4.50
Let n € N, ¢ € C and consider the equation
(4.11)

Z =cC.

All the n solutions to (4.11) are given by

zk=Q/Hexp<i6+2ﬂk>, k=0,....n—1,
n

where Q/H is the n-th root of the real number |c|, and 6 =
arg(c).

Example 4.51
Question. Find all the z € C such that
2’ = -32.

Solution. Let ¢ = —32. We have

lef=]-32/=32=2°, 0=arg(-32)=r.
The 5 solutions are given by
1
z 1+2
zk:(zs)sexp<i7t ki k), kez,
fork =10,1,2,3,4. We get
iZ i3_”
zZy) = 2es zZ1 = 2e 5
- i1
zy =27 = -2 73 = 2€' 5
o
z4=2e5

Example 4.52

Question. Find all the z € C such that

=9 (cos <§) + isin(%)) :

Solution. Set

¢ =5 cos(Z) isin(Z))

The complex number c is already in the trigonometric
form, so that we can immediately obtain
7T

0 =arg(c) = =

el =9, :
3
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The 4 solutions are given by

3+ 27k
sz(*@exp(i—ﬂ/ dd )

(. 1+6k>
=+3exp|ir

for k = 0,1,2,3. We compute

1

zZy) = \/geiﬂE

.13
17T —
22 = +3e 12

7

zZ1 = \/gem-E

.19
LT —
Z3 = 4/3e" 12




5 Sequences in R

Definition 5.1: Convergent sequence

The real sequence (a,) converges to a, or equivalently
has limit a, denoted by

lim a, = a,
n—>oo

if for all € € R, e > 0, there exists N € IN such that for all
n € N,n > N it holds that

la, —al <¢.
Using quantifiers, we can write this as
Ve>0,AINeN st. Vvn>N, |a,—a|<e.

The sequence (a,),cp is convergent if it admits limit.

Theorem 5.2

Let p > 0. Then

Proof

Let p > 0. We have to show that
Ve>0,IN €N st Vn> N, ‘ip—o‘@.
n

Let £ > 0. Choose N € IN such that

1
N>—.
cl/p

(5.1)

Letn > N. Since p > 0, we have n > NP, which implies

1.1
np NP
By (5.1) we deduce
1
W <ée
Then . . )
n—p — 0‘ = n—p < ﬁ <¢€
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Example 5.3

Question. Using the definition of convergence, prove
that

. 1
lim ==,
n—oo 2n + 3 2

Solution.

1. Rough Work: Let ¢ > 0. We want to find N € N such
that

‘ n —1‘<£, vn>N.
2n+3 2

To this end, we compute:

n 1‘_ 2n—(2n+3)
2n+3 21 | 2@2n+3)
=|orrel
4n+ 6
_ 3
an+6
Therefore
n 1 3
—=<e = <e
2n+3 2 n+6
n+6 1
— > =
3 £
3
= 4n+6> -
I3
— 4n>§—6
I3
3 6
= n>——--.
4 4

Looking at the above equivalences, it is clear that
N € N has to be chosen so that

N>3 8
4 4

2. Formal Proof: We have to show that

n 1
— = <e€.

Ve>0,IN €N st. vn> N,
2n+3 2

Let ¢ > 0. Choose N € N such that

N>2_8
4

” (5.2)

By the rough work shown above, inequality (5.2) is

equivalent to
3

4N + 6

<eE.




Let n > N. Then

‘ n _l‘_ 3
2n+3 2 n+6
< 3
4N + 6
<é€,

where in the third line we used that n > N.

Definition 5.4: Divergent sequence

We say that a sequence (a,),¢n in R is divergent if it is
not convergent.

Theorem 5.5
Let (a,) be the sequence defined by
a, = (—1)".

Then (a,) does not converge.

Proof

Suppose by contradiction that a, — a for some a € R. Let

Since a,, — q, there exists N € IN such that

1

|an—a|<€=§ vn>N.

If we take n = 2N, thenn > N and
1

|a2N—a|=|l—a|<E.

If we take n = 2N + 1, thenn > N and

1
|a2N+1—a|:|—1—a|<5.
Therefore
2=|1-a)-(-1-a)

<|1—da+|-1-gq

1 1
<-4-=1,

2 2

which is a contradiction. Hence (a,) is divergent.

Theorem 5.6: Uniqueness of limit
Let (a,),en be a sequence. Suppose that

lim a, =b.
n—oo

lim a, = a,
n—oo

Thena =b.
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Definition 5.7: Bounded sequence

A sequence (ay),cn is called bounded if there exists a
constant M € R, with M > 0, such that

la,] <M, vVneNlN.

Theorem 5.8

Every convergent sequence is bounded.

Example 5.9

The sequence
an = -1

is bounded but not convergent.

Corollary 5.10

If a sequence is not bounded, then the sequence does not
converge.

Remark 5.11
For a sequence (a,) to be unbounded, it means that

VM>0, 3Ine N s.t. |a,| > M.

Theorem 5.12

For all p > 0, the sequence

an = np
does not converge.
Theorem 5.13
The sequence
a, = logn

does not converge.




Theorem 5.14: Algebra of limits
Let (a,),en and (b,),en be sequences in R. Suppose that

lim a, =a, limb, =0,
n—oo n—oo
for some a,b € R. Then,

1. Limit of sum is the sum of limits:

lim (a, £b,) =a+b
n—o0

2. Limit of product is the product of limits:

lim (a,b,) = ab
n—o0

3. Ifb, # 0 for alln € N and b # 0, then

lim (a_n> =4
n—eo\b,/ b

Example 5.15

Question. Prove that

. 3n 3
lim ==,
n—so 7Tn+4 7

Solution. We can rewrite

3n 3
n+4

4
7+ 2

n
From Theorem 5.2, we know that

1

- —0.
n

Hence, it follows from Theorem 5.14 Point 2 that

é:4-1—>4-0=0.
n n

By Theorem 5.14 Point 1 we have
4
7+—-—>7+0=7.
n

Finally we can use Theorem 5.14 Point 3 to infer

3n 3
:—4—);,
n+4 742
n

Example 5.16
Question. Prove that

onf—-1 1
lim ==,
n—oo 2p2 -3 2

Solution. Factor n? to obtain

1
1— —
nf-1 _ n?
n?-3 ,_3°
2 _—
n2
By Theorem 5.2 we have
1
— —0.
n2

We can then use the Algebra of Limits Theorem 5.14 Point

2 to infer 3
= 53.0=0
n2

and Theorem 5.14 Point 1 to get

l—i—>1—0=1, 2—i—>2—0=2.
n2 n?

Finally we use Theorem 5.14 Point 3 and conclude

1
1 -
n2 1
3 3"
,_3 2
n2
Therefore
1
1 —_

. nf-1 . A |
lim = lim ==
n—oo 2pé — 3 n—oo 2 2

n2

Example 5.17
Question. Prove that the sequence

_4an®+8n+1

a, =
" 2+ 2n+1

does not converge.
Solution. To show that the sequence (a,) does not con-
verge, we divide by the largest power in the denominator,




which in this case is n?

an® +8n+1

n? +2n+1
4n+§+i2
n o n
2 1
7+—+—2

ay, =

where we set

2 1
G i =T+-+—.
n o n

b, :=4n+

S oo

L1
n?’

Using the Algebra of Limits Theorem 5.14 we see that

2 1
G=T7+-+—=—>7.
n n
Suppose by contradiction that
a, = a

for some a € R. Then, by the Algebra of Limits, we would
infer
b,=c¢,-a, — 7a,

concluding that b, is convergent to 7a. We have that

by=dn+d,, d =2
n

L1
n?
Again by the Algebra of Limits Theorem 5.14 we get that

8 1
dn:—+—2—>0,
n n

and hence
an=>b,—d, >7a—-0="Ta.

This is a contradiction, since the sequence (4n) is un-
bounded, and hence cannot be convergent. Hence (a,)
is not convergent.

Example 5.18

Question. Define the sequence

2+ Tn+1 8n+9
an = . 3 > .
5n+9 6n° +8n“+3
Prove that
lim a, = —
e T

Solution. The first fraction in (a,) does not converge,
as it is unbounded. Therefore we cannot use Point 2 in
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Theorem 5.14 directly. However, we note that

_2®+7n+1  8n+9
 5n+9  en3+8n+3
_8n+9 2n’+7n+1
C5n+9 6n3+8n2+3

Factoring out n and n3, respectively, and using the Alge-
bra of Limits, we see that

8n+9 8+9/n 8+0 8
_ R _

5n+9 5+9/m 5+0 5

and
2+7/m*+1/n®> 24040 1
— ==
6+8/n+3/n> 6+0+0 3
Therefore Theorem 5.14 Point 2 ensures that

Example 5.19
Question. Prove that

3y ogn+7
ay = ——————
4n3/2 4 5pn
does not converge.

Solution. The largest power of n in the denominator is
n®/?. Hence we factor out n>/2

B vagn+7
= 4n3/2 + 5n
W7/3-3/2 | 9n1/2-3/2 | 7,-3/2
4+ 5n73/2
n5/6 + on1 4 7n73/2
4+5n73/2

where we set

by, = nd/6 4 on~ 4 7n73/2, Cp, =4 +5073/2,

We see that b, is unbounded while ¢, — 4. By the Algebra
of Limits (and usual contradiction argument) we conclude
that (a,) is divergent.




Theorem 5.20
Let (a,),en be a sequence in R such that

lim a, =a,
n—oo

for some a € R. If @, > 0 for alln € N and a > 0, then

lim J/a, = Ja.

n—oo

Example 5.21

Question. Define the sequence

a, =\n?+3n+1-3n.

Prove that

lim a, = -
n—oo

Solution. We first rewrite
a, =\?+3n+1-3n
(Vor? + 3n+ 1= 3n) (Von? + 3n + 1+ 3n)
Von? +3n+1+3n

_ 9n® +3n+1—(3n)?

N2 +3n+1+3n

_ 3n+1
\o9n2 +3n+1+3n

The biggest power of n in the denominator is n. Therefore
we factor out n:

a, =\9n?®+3n+1-3n
3n+1

N2 +3n+1+3n

341
n

/9+§+i2+3
n n

By the Algebra of Limits we have

9+§+i2—>9+0+o:9.
n n

Therefore we can use Theorem 5.20 to infer

/9+§+i2—>\/5.
n n

By the Algebra of Limits we conclude:

1
3+ =
n 340 1
an: 3 1 —)\/6 3:5
94>+ = +3 +
n n
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Example 5.22

Question. Prove that the sequence

a, =\n?+3n+1-2n

does not converge.
Solution. We rewrite a, as

a,=\on®+3n+1-2n
_(\om?+3n+1-— 2n)(\N9n? + 3n+ 1+ 2n)
\Jon? +3n+1+2n

_9n® +3n+1—(2n)?

Jon +3n+1+2n

5n2 +3n+ 1

Non2 +3n+1+2n

5n+3+l
n

3.1
/9+—+—2+2
n n

where we factored n, being it the largest power of n in the
denominator, and defined

1 1
b, :=5n+3+-, ¢, := 9+§+—2+2.
n n o n
Note that 5 1
9+-+—=—-9
n  n?

by the Algebra of Limits. Therefore

f9+§+i—>\@:3
n  n?

by Theorem 5.20. Hence

6= o+2+Lia5312=5
n le

The numerator 1
b,=5n+3+ =
n

is instead unbounded. Therefore (a,) is not convergent,
by the Algebra of Limits and the usual contradiction ar-
gument.




5.1 Limit Tests

Theorem 5.23: Squeeze theorem

Let (a,), (b,) and (c,) be sequences in R. Suppose that

b,<a,<c¢,, VneNN,
and that
lim b, = lim¢, =L.
n—oo n—oo
Then
lima,=L.
n—oo

Example 5.24
Question. Prove that

tim

n—oo n

0.

Solution. For all n € IN we can estimate

-1<(-1)"<1.
Therefore
— —1)"
—1§( )gl, vneN.
n n n
Moreover
lim_—1=—1-0=0, liml=0.
n—oo n n—oon

By the Squeeze Theorem 5.23 we conclude

—1)"
lim ) =0.
n—oo n
Example 5.25
Question. Prove that
cos(3n) + 9n? 9

im - ==
n—e 11n2 + 15sin(17n) 11
Solution. We know that

—1<cos(x)<1, —-1<sin(x)<1, Vxe€eR.

Therefore, for alln € N
—1<cos(3n) <1, —-1<sin(17n)<1.

We can use the above to estimate the numerator in the
given sequence:

—1+49n% < cos(3n) +9n% < 1+ 9n?. (5.3)

Concerning the denominator, we have
11n% — 15 < 11n% + 15sin(17n) < 11n% + 15

and therefore

1 < 1 < 1
11n%2 + 15 = 11n2 + 15sin(17n) ~ 11n2 — 15

Putting together (5.3)-(5.4) we obtain

—1+952 cos(3n) + 9n? 1+ 952
11n2 +15 = 11n2 4+ 15sin(17n) ~ 11n2 — 15

By the Algebra of Limits we infer

1
—1+95% _ p? 0+9 9
- - -2
n?+15 4, 15 11+0 11
n2
and
Lo
1+9n2 2 0+9 _ 9
11n2 — 15 15 1140 11°
1-=
n2

Applying the Squeeze Theorem 5.23 we conclude

cos(3n) + 9n? 9

im _ ==
n—e 11n2 + 15sin(17n) 11

Theorem 5.26: Geometric Sequence Test

Let x € R and let (a,) be the geometric sequence defined
by

a, 1= x".
We have:
1. If |x| < 1, then
lim aq, =0.
n—oo

2. If |[x| > 1, then sequence (a,) is unbounded, and
hence divergent.
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Example 5.27

We can apply Theorem 5.26 to prove convergence or di-
vergence for the following sequences.

() —o

o=5<1.
2 2

1. We have

since




2. We have
—1\"
(Z) —o
2

5 =5 <1.
2 2

since
3. The sequence

does not converge, since
-3 3
Z[=2>1.
2 2

4. Asn — oo,

(=5 5
since
3
-3 =2 <1
5 5
5. The sequence
_ 7
n = 22n

does not converge, since

()
and
g

Theorem 5.28: Ratio Test
Let (a,) be a sequence in R such that
a, 0, vnelN.

1. Suppose that the following limit exists:

a
L := lim |1
n—o| q,
Then,
« If L <1 we have
lim aq, = 0.
n—oo

« If L > 1, the sequence (a,) is unbounded, and
hence does not converge.

2. Suppose that there exists N € Nand L > 1 such that

an+1
an

ZLr

vn>N.

Then the sequence (a,) is unbounded, and hence
does not converge.

Example 5.29

Question. Let
3”
a, =

5

n!
where we recall that n! (pronounced n factorial) is defined
by
nl:=n-(mn-1-n-2)-...-3-2-1.
Prove that
lim a, =0.

n—oo

3n+l
((n+ 1)!)

()

3n+1

Solution. We have

An+1

n!
3" (n+1)!
3.3" n!
3" (n+ 1n!
3
n+1

— L =0.

Hence, L = 0 < 1 s0 a, — 0 by the Ratio Test in Theorem
5.28.
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Example 5.30

Question. Consider the sequence
n!-3"

ap, = .
J(@2n)!

Prove that (a,) is divergent.
Solution. We have

_ (n+1)!-3"(2n)!

- Jem+) nt3"

_(n+ Dt gl \(2n)!
-l 3 Jem+ )

An+1
ap

For the first two fractions we have

n+1)! 3l
( . ) =3,




while for the third fraction

J(@2n)! _ (2n)!
J@m+ 1) \ Gn +2)!

B (2n)!
“\@n+2)-C2n+1)-(2n)
1

Jen+ D@n+2)

Therefore, using the Algebra of Limits,

An+1 _ 3(n+1)
an J@n+1)(2n+2)

) n(1+ )
FEDE)
) 3(1+2) 55,
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By the Ratio Test we conclude that (a,) is divergent.

Example 5.31

Question. Prove that the following sequence is divergent

n!
100"

a, =

Solution. We have

An+1
an

100" (n+ 1! _ n+1
Co100mtt n! '

100

Choose N = 101. Then for alln > N,

n+1
100
N+1

100
-0
100

An+1

an

>

Hence g, is divergent by the Ratio Test.
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B -

Let (a,) be a real sequence. We say that:

1. (a,) is increasing if

a, < ayy1, VYn=>2N
2. (a,) is decreasing if
a, > a,,1, VYn>N

3. (a,) is monotone if it is either increasing or decreas-
ing.

Example 5.33

Question. Prove that the following sequence is increas-
ing

n—1
a, =
n
Solution. We have
g =" sl g
T n n

where the inequality holds because

n_oontl o RS (—DGm+1)
n+1 n
— n? >n?—1
— 0>-1
Example 5.34

Question. Prove that the following sequence is decreas-
ing

concluding.

Theorem 5.35: Monotone Convergence Theorem

Let (a,) be a sequence in R. Suppose that (a,) is bounded
and monotone. Then (a,) converges.




Proof 5.3 Example: Euler’s Number

Assume (a,) is bounded and monotone. Since (a,) is

As an application of the Monotone Convergence Theorem we
bounded, the set pp g

can give a formal definition for the Euler’s Number

A:={a, : neN}CR e = 2.71828182845904523536 ...

is bounded below and above. By the Axiom of Complete-

_ Theorem 5.36
ness of R there exist i, s € R such that

Consider the sequence
i=infA, s=supA.

1 n
We have two cases: ap = (1 + ;) .
1. (a,) is increasing: We are going to prove that We have that:
lim a, =s. 1. (a,) is monotone increasing,
n—oo

2. (ay) is bounded.

Equivalently, we need to prove that ) '
In particular (a,) is convergent.

Ve>0,INeN st. va> N, la,—s|<e. (5.5)

. . Proof
Let € > 0. Since s is the smallest upper bound for A,
this means Part 1. We prove that (a,) is increasing
s—¢
ay 2> ap_1, VneN,
is not an upper bound. Therefore there exists N € N
such that which by definition is equivalent to
s—e<ay. (5.6) " e
Let n > N. Since a, is increasing, we have <1+;) 2 <1+ n—1> , VneN.
ay <a,, VYn>N. (5.7) Summing the fractions we get
n+1\" n \"!
Moreover s is the supremum of A, so that ( ) > ( ) )
n n—1
ap<s<s+e, VneN. (58) Multiplying by ((n — 1)/n)" we obtain
Putting together estimates (5.6)-(5.7)-(5.8) we get (n - 1)" (n + 1)" Sn-1
n n T on
s—e<any<a,<s<s+e¢e, VYVn>N.
N-=n which simplifies to
The above implies 1\" 1
(1——2> >1—=, VvVneN. (5.9)
s—e<a,<s+¢e, VYn>N, n n
Therefore (a,) is increasing if and only if (5.9) holds. Re-
which is equivalent to (5.5). call Bernoulli’s inequality from Lemma ??: For x € R,
2. (a,) is decreasing: With a similar proof, one can x> —1, it holds
show that 1+x)">1+nx, VvneN.
lim a, =1i.
n—o00

Appliying Bernoulli’s inequality with
This is left as an exercise.
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which is exactly (5.9). Then (a,) is increasing. We now observe that For alln € N
Part 2. We have to prove that (a,) is bounded, that is, that

1 n+1
there exists M > 0 such that b, = (1 + _)
n
n
la)) <M, VneN. :<1+l) (Hl)
n n
To this end, introduce the sequence (b,) by setting _ 4 ( 1+ 1)
=a, -
1 n+1 n
b,,::<1+—> . > ay.
n
The sequence (b,) is decreasing. Since (a,) is increasing and (b,) is decreasing, in particu-
lar
To prove (by,) is decreasing, we need to show a,>a;, b,<b;.
that
by >b,, VneN. Therefore
By definition of b, the above reads a;<a,<b,<b;, vneN.
n n+1
<1+ ! ) 2(1+1) , vneN. We compute
n—1 n aq=2, b =4,
Summing the terms inside the brackets, the from which we get
above is equivalent to
2<a,<4, VneNN.
( n )">(n+1>"<n+1> "
n—1/ ~\ n n /-’ Therefore
Multiplying by (n/(n + 1))" we get lanl <4, VneN,
2 A\ showing that (a,) is bounded.
n n+1 . .
( 2_ 1) > ( " ) . Part 3. The sequence (a,) is increasing and bounded
" above. Therefore (a,) is convergent by the Monotone
The above is equivalent to Convergence Theorem 5.35.
Y 1
1+ 21 2 |\1+ n) (5.10) Thanks to Theorem 5.36 we can define the Euler’s Number e.
Therefore (b,) is decreasing if and only if (5.10) Deffrifen s s Buller's Niadhan
holds for all n € IN. By choosing
1 The Euler’s number is defined as
X = 2_1q n
n2 —
e := lim (1+l) .
in Bernoulli’s inequality, we obtain n—eo n
IR 1 . . .
1+ — >1+n(= Setting n = 1000 in the formula for (a,), we get an approxima-
w1 rrll -1 tion of e:
=1+
n?—1 e = ay = 2.7169.
21+ 1 ;
n
where in the last inequality we used that
n_ 1 5.4 Some important limits
n2—1"n’
which holds, being equivalent to n? > n? — 1.
We have therefore proven (5.10), and hence (b,) In this section we investigate limits of some sequences to
is decreasing. which the Limit Tests do not apply.
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Theorem 5.38
Let x € R, with x > 0. Then

lim ¥x=1.

n—oo

Proof

Step 1. Assume x > 1. In this case

Yx>1.

Define
b, :=%x—1,

so that b, > 0. By Bernoulli’s Inequality we have
x=0+b)">1+nb,.

Therefore )
0<b, <=

n

Since
x—1

0 bl
n

by the Squeeze Theorem we infer b, — 0, and hence

Yx=1+b,—14+0=1,

by the Algebra of Limits.
Step 2. Assume 0 < x < 1. In this case
11
x
Therefore
lim {1/x=1.
n—oo
by Step 1. Therefore
{’E = 1 — l =1,
Y1/x 1

by the Algebra of Limits.

Theorem 5.39
Let (a,) be a sequence such that a, — 0. Then

sin(a,) > 0, cos(a,) — 1.

Proof

Assume that g, — 0 and set

T
£ ==,
2
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By the convergence a,, — 0 there exists N € N such that
T
la"|<€:§ Yn>N. (5.11)

Step 1. We prove that
sin(a,) — 0.

By elementary trigonometry we have

0 <|sin(x)| =sin|x| < |x|], VxE€ [—% %] i

Therefore, since (5.11) holds, we can substitute x = a, in
the above inequality to get

0 < |sin(ay)| < a,|, Vn>N.

Since a, — 0, we also have |a,] — 0. Therefore
| sin(a,)| — 0 by the Squeeze Theorem. This immediately
implies sin(a,) — 0.

Step 2. We prove that

cos(a,) = 1.
Inverting the relation

cos?(x) + sin’(x) = 1,

cos(x) = £4/1— sinz(x).

We have that cos(x) > 0 for —z/2 < x < n/2. Thus

cos(x) =4/1— sinz(x), Vx € [—%, %] .

Since (5.11) holds, we can set x = g, in the above inequal-
ity and obtain

cos(a,) = /1 —sin*(a,), Vn>N.

By Step 1 we know that sin(a,) — 0. Therefore, by the
Algebra of Limits,

we obtain

1—sin*(a,)) —1-0-0=1.
Using Theorem 5.20 we have
cos(a,) =1 — sinz(an) —J1=1,

concluding the proof.



Theorem 5.40

Suppose (a,) is such that @, — 0 and

a,#0, vnelN.
Then in(a)
sin(a
lim =1,
n—oo a,
Proof

The following elementary trigonometric inequality holds:
sin(x) < x < tan(x), Vx¢€ [0, %] .

Note that sinx > 0 for 0 < x < x/2. Therefore we can
divide the above inequality by sin(x) and take the recip-
rocals to get

cos(x) < sin(x)

<1, Vxe(O,z].
2

If —/2 < x < 0, we can apply the above inequality to —x
to obtain

cos(—x) < sin(=x) <1.
Recalling that cos(—x) = cos(x) and sin(—x) = — sin(x),
we get
sin(x) T
cos(x) < <1, Vxe(——,O].
2
Thus
sin(x) T
cos(x) < <1, Vxe [——, —] N{0}.  (5.12)
X 2 2
Let
T
£:1= =,
2

Since a,, — 0, there exists N € IN such that
|an|<£=%, vn>N.
Since a, # 0 by assumption, the above shows that

ane[—%,g]\{o}, vn>N.

Therefore we can substitute x = a, into (5.12) to get

sin(a
cos(ay) < M <1,
a

n

vn>N.

We have
cos(a,) = 1

by Theorem 5.39. By the Squeeze Theorem we conclude
that

sin(a,) .

an

lim
n—oo

Warning

You might be tempted to apply L’Hopital’s rule (which we
did not cover in these Lecture Notes) to compute

sin(x)

lim

x—0 X

This would yield the correct limit
(sin(x))’
(x)’

However this is a circular argument, since the derivative
of sin(x) at x = 0 is defined as the limit

. sin(x)
lim

x—0 X

= lim
x—0

= lim cos(x) = 1.
x—0

. sin(x)
lim

x—0 X

Theorem 5.41

Suppose (a,) is such that a, — 0 and

a, #0, VvnelN.
Then
. 1-—cos(a,) 1 . 1—cos(ay,)
lim ———==, lim ———==0
e (R 2 e 4
Proof

Step 1. By Theorem 5.39 and Theorem 5.40, we have

sin(a
cos(a,) — 1, M — 1.

an
Therefore

1—cos(a;,) 1—cos(a,) 1+ cos(a,)

(an)z (an)2 1 + cos(a,)
1= cos?(ay) 1
(a,)> 1+ cos(ay)
. 2
(sm(an)) 1 1 1
- — 1] — = = s
ap 1 + cos(a,) 141 2

where in the last line we use the Algebra of Limits.
Step 2. We have

1 — cos(ay,) 1 — cos(ay) 1
_ = —_— .

T )

using Step 1 and the Algebra of Limits.

ap
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Example 5.42

Question. Prove that

lim nsin<l> =1. (5.13)
n—>oo n
Solution. This is because
a(;)
sin | =
. ( 1 ) n
nsin|{— )= — 1,
n b
n
by Theorem 5.40 with a, = 1/n.
Example 5.43
Question. Prove that
lim n? (1 —cos (l)) _1 . (5.14)
n—oo n 2

Solution. Indeed,

by applying Theorem 5.41 with a, = 1/n.

Example 5.44

Question. Prove that
1
1— fal
”( Cos(n>> 1
. ( 1 ) _ 2 |
sin( =
n

Solution. Using (5.14)-(5.13) and the Algebra of Limits

n(1meos(G)) (e (D))

lim
n—o0

Example 5.45
Question. Prove that

lim ncos
n—oo

(Jen(d) ==

Solution. We have

by Theorem 5.39 applied with a, = 2/n. Moreover

. (2)
sin | —
n
2

_)1’
n

by Theorem 5.40 applied with a, = 2/n. Therefore

peos(2)sin (2) = 2-con(2) - 3/

—2-1-1=2,

where we used the Algebra of Limits.
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Example 5.46

Question. Prove that

. on+1 . (1
lim sin{-)=1.
n—oo n+1 n

Solution. Note that

1+ =
n+1 . (1) n2 ( . (1))
sin|— ) = 1 -{nsin| —
n+1 n 1+ = n
n
N L P
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where we used (5.13) and the Algebra of Limits.
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