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Revision Guide

Revision Guide document for the module Numbers Se-
quences and Series 400297 2024/25 at the University of Hull.
If you have any question or find any typo, please email me at

S.Fanzon@hull.ac.uk

Full lenght Lecture Notes of the module available at

silviofanzon.com/2024-NSS-Notes

Recommended revision strategy

Make sure you are very comfortable with:

1. The Definitions, Theorems, Proofs, and Examples con-
tained in this Revision Guide

2. The Tutorial and Homework questions
3. The 2023/24 Exam Paper questions.
4. The Checklist below

Checklist

You should be comfortable with the following topics/taks:

Preliminaries

• Prove that √𝑝 ∉ ℚ for 𝑝 a prime number
•

Complex Numbers

• Sum, multiplication and division of complex numbers
• Computing the complex conjugate
• Computing the inverse of a complex number
• Find modulus and argument of a complex number
• Compute Cartesian, Trigonometric and Exponential
form of a complex number

• Complex exponential and its properties
• Computing powers of complex numbers
• Solving degree 2 polynomial equations in ℂ
• Long division of polynomials
• Solving higher degree polynomial equations in ℂ
• Finding the roots of unity
• Finding the n-th roots of a complex number
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1 Preliminaries

Theorem 1.1

The number √2 does not belong to ℚ.

Proof

Aassume by contradiction that

√2 ∈ ℚ . (1.1)

1. Therefore, there exists 𝑚, 𝑛 ∈ ℕ, 𝑛 ≠ 0, such that
𝑚
𝑛 = √2 .

2. Withouth loss of generality, we can assume that
𝑚 and 𝑛 have no common factors.

3. Square the equation to get

𝑚2
𝑛2 = 2 ⟹ 𝑚2 = 2𝑛2 . (1.2)

Therefore the integer 𝑚2 is an even number.

4. Since 𝑚2 is an even number, it follows that also 𝑚 is
an even number. Then there exists 𝑝 ∈ ℕ such that

𝑚 = 2𝑝 . (1.3)

5. Substitute (1.3) in (1.2) to get

𝑚2 = 2𝑛2 ⟹ (2𝑝)2 = 2𝑛2 ⟹ 4𝑝2 = 2𝑛2

Dividing both terms by 2, we obtain

𝑛2 = 2𝑝2 . (1.4)

6. We now make a series of observations:

• Equation (1.4) says that 𝑛2 is even.
• The same argument in Step 4 guarantees that
also 𝑛 is even.

• Therefore 𝑛 and𝑚 are both even, meaning they
have 2 as common factor.

• But Step 2 says that 𝑛 and 𝑚 have no common
factors. Contradiction

7. Our reasoning has run into a contradiction, stem-
ming from assumption (1.1). Therefore (1.1) is FALSE,
and so

√2 ∉ ℚ
ending the proof.

1.1 Set Theory

Definition 1.2

For two sets 𝐴 and 𝐵 we define their union as the set

𝐴 ∪ 𝐵 ∶= {𝑥 ∶ 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵} .

The intersection of 𝐴 and 𝐵 is defined by

𝐴 ∩ 𝐵 ∶= {𝑥 ∶ 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵} .

We denote the empty set by the symbol ∅. Two sets are
disjoint if

𝐴 ∩ 𝐵 = ∅ .
Given two sets 𝐴 and 𝐵, we say that 𝐴 is contained in 𝐵,
in symbols

𝐴 ⊆ 𝐵 ,
if all the elements of 𝐴 are also contained in 𝐵. Two sets
𝐴 and 𝐵 are equal, in symbols

𝐴 = 𝐵 ,

if they contain the same elements.

Proposition 1.3

Let 𝐴 and 𝐵 be sets. Then

𝐴 = 𝐵 ⟺ 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 .

Definition 1.4

Let Ω be a set, and 𝐴𝑛 ⊆ Ω a family of subsets, where
𝑛 ∈ ℕ.

1. The infinte union of the 𝐴𝑛 is the set

⋃
𝑛∈ℕ

𝐴𝑛 ∶= {𝑥 ∈ Ω ∶ 𝑥 ∈ 𝐴𝑛 for at least one 𝑛 ∈ ℕ} .

2. The infinte intersection of the 𝐴𝑛 is the set

⋂
𝑛∈ℕ

𝐴𝑛 ∶= {𝑥 ∈ Ω ∶ 𝑥 ∈ 𝐴𝑛 for all 𝑛 ∈ ℕ} .
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Example 1.5

Question. Define Ω ∶= ℕ and a family 𝐴𝑛 by

𝐴𝑛 = {𝑛, 𝑛 + 1, 𝑛 + 2, 𝑛 + 3, …} , 𝑛 ∈ ℕ .

1. Prove that
⋃
𝑛∈ℕ

𝐴𝑛 = ℕ . (1.5)

2. Prove that
⋂
𝑛∈ℕ

𝐴𝑛 = ∅ . (1.6)

Solution.

1. Assume that 𝑚 ∈ ∪𝑛𝐴𝑛. Then 𝑚 ∈ 𝐴𝑛 for at least one
𝑛 ∈ ℕ. Since 𝐴𝑛 ⊆ ℕ, we conclude that 𝑚 ∈ ℕ. This
shows

⋃
𝑛∈ℕ

𝐴𝑛 ⊆ ℕ .

Conversely, suppose that 𝑚 ∈ ℕ. By definition 𝑚 ∈
𝐴𝑚. Hence there exists at least one index 𝑛, 𝑛 = 𝑚
in this case, such that 𝑚 ∈ 𝐴𝑛. Then by definition
𝑚 ∈ ∪𝑛∈ℕ𝐴𝑛, showing that

ℕ ⊆ ⋃
𝑛∈ℕ

𝐴𝑛 .

This proves (1.5).

2. Suppose that (1.6) is false, i.e.,

⋂
𝑛∈ℕ

𝐴𝑛 ≠ ∅ .

This means there exists some 𝑚 ∈ ℕ such that 𝑚 ∈
∩𝑛∈ℕ𝐴𝑛. Hence, by definition, 𝑚 ∈ 𝐴𝑛 for all 𝑛 ∈ ℕ.
However 𝑚 ∉ 𝐴𝑚+1, yielding a contradiction. Thus
(1.6) holds.

Definition 1.6

Let 𝐴, 𝐵 ⊆ Ω. The complement of 𝐴 with respect to 𝐵 is
the set of elements of 𝐵 which do not belong to 𝐴, that is

𝐵 ∖ 𝐴 ∶= {𝑥 ∈ Ω ∶ 𝑥 ∈ 𝐵 and 𝑥 ∉ 𝐴} .

In particular, the complement of 𝐴 with respect to Ω is
denoted by

𝐴𝑐 ∶= Ω ∖ 𝐴 ∶= {𝑥 ∈ Ω ∶ 𝑥 ∉ 𝐴} .

Example 1.7

Question. Suppose 𝐴, 𝐵 ⊆ Ω. Prove that

𝐴 ⊆ 𝐵 ⟺ 𝐵𝑐 ⊆ 𝐴𝑐 .

Solution. Let us prove the above claim:

• First implication ⟹ :
Suppose that 𝐴 ⊆ 𝐵. We need to show that 𝐵𝑐 ⊆ 𝐴𝑐 .
Hence, assume 𝑥 ∈ 𝐵𝑐 . By definition this means that
𝑥 ∉ 𝐵. Now notice that we cannot have that 𝑥 ∈
𝐴. Indeed, assume 𝑥 ∈ 𝐴. By assumption we have
𝐴 ⊆ 𝐵, hence 𝑥 ∈ 𝐵. But we had assumed 𝑥 ∈ 𝐵,
contradiction. Therefore it must be that 𝑥 ∉ 𝐴. Thus
𝐵𝑐 ⊆ 𝐴𝑐 .

• Second implication ⟸ : Note that, for any set,

(𝐴𝑐)𝑐 = 𝐴 .

Hence, by the first implication,

𝐵𝑐 ⊆ 𝐴𝑐 ⟹ (𝐴𝑐)𝑐 ⊆ (𝐵𝑐)𝑐 ⟹ 𝐴 ⊆ 𝐵 .

Proposition 1.8: De Morgan’s Laws

Suppose 𝐴, 𝐵 ⊆ Ω. Then

(𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐 , (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐 .

Definition 1.9

Let Ω be a set. The power set of Ω is

𝒫 (Ω) ∶= {𝐴 ∶ 𝐴 ⊆ Ω} .

Example 1.10

Question. Compute the power set of

Ω = {𝑥, 𝑦 , 𝑧} .

Solution. 𝒫 (Ω) has 23 = 8, and

𝒫 (Ω) = {∅, {𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦} (1.7)

{𝑥, 𝑧}, {𝑦 , 𝑧}, {𝑥, 𝑦 , 𝑧}} . (1.8)

Definition 1.11

Let𝐴, 𝐵 be sets. The product of𝐴 and 𝐵 is the set of pairs

𝐴 × 𝐵 ∶= {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} .
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1.2 Relations

Definition 1.12

Suppose 𝐴 is a set. A binary relation 𝑅 on 𝐴 is a subset

𝑅 ⊆ 𝐴 × 𝐴 .

Definition 1.13: Equivalence relation

A binary relation 𝑅 is called an equivalence relation if
it satisfies the following properties:

1. Reflexive: For each 𝑥 ∈ 𝐴 one has

(𝑥, 𝑥) ∈ 𝑅 ,

2. Symmetric: We have

(𝑥, 𝑦) ∈ 𝑅 ⟹ (𝑦, 𝑥) ∈ 𝑅

3. Transitive: We have

(𝑥, 𝑦) ∈ 𝑅 , (𝑦 , 𝑧) ∈ 𝑅 ⟹ (𝑥, 𝑧) ∈ 𝑅

If (𝑥, 𝑦) ∈ 𝑅 we write

𝑥 ∼ 𝑦

and we say that 𝑥 and 𝑦 are equivalent.

Definition 1.14: Equivalence classes

Suppose 𝑅 is an equivalence relation on 𝐴. The equiv-
alence class of an element 𝑥 ∈ 𝐴 is the set

[𝑥] ∶= {𝑦 ∈ 𝐴 ∶ 𝑦 ∼ 𝑥} .

The set of equivalence classes of elements of 𝐴 with re-
spect to the equivalence relation 𝑅 is denoted by

𝐴/𝑅 ∶= 𝐴/∼∶= {[𝑥] ∶ 𝑥 ∈ 𝐴} .

Proposition 1.15

Let ∼ be an equivalence relation on 𝐴. Then

1. For each 𝑥 ∈ 𝐴 we have

[𝑥] ≠ ∅

2. For all 𝑥, 𝑦 ∈ 𝐴 it holds

𝑥 ∼ 𝑦 ⟺ [𝑥] = [𝑦] .

Example 1.16: Equality is an equivalence relation

Question. The equality defines a binary relation on
ℚ × ℚ, via

𝑅 ∶= {(𝑥, 𝑦) ∈ ℚ × ℚ ∶ 𝑥 = 𝑦} .

1. Prove that 𝑅 is an equivalence relation.
2. Prove that [𝑥] = {𝑥} and compute ℚ/𝑅.

Solution.

1. We need to check that 𝑅 satisfies the 3 properties of
an equivalence relation:

• Reflexive: It holds, since 𝑥 = 𝑥 for all 𝑥 ∈ ℚ,

• Symmetric: Again 𝑥 = 𝑦 if and only if 𝑦 = 𝑥 ,
• Transitive: If 𝑥 = 𝑦 and 𝑦 = 𝑧 then 𝑥 = 𝑧.

Therefore, 𝑅 is an equivalence relation.

2. The class of equivalence of 𝑥 ∈ ℚ is given by

[𝑥] = {𝑥} ,

that is, this relation is quite trivial, given that each
element of ℚ can only be related to itself. The quo-
tient space is then

ℚ/𝑅 = {[𝑥] ∶ 𝑥 ∈ ℚ} = {{𝑥} ∶ 𝑥 ∈ ℚ} .

Example 1.17

Question. Let 𝑅 be the binary relation on the set ℚ of
rational numbers defined by

𝑥 ∼ 𝑦 ⟺ 𝑥 − 𝑦 ∈ ℤ .
1. Prove that 𝑅 is an equivalence relation on ℚ.
2. Compute [𝑥] for each 𝑥 ∈ ℚ.
3. Compute ℚ/𝑅.

Solution.

1. We have:

• Reflexive: Let 𝑥 ∈ ℚ. Then 𝑥 −𝑥 = 0 and 0 ∈ ℤ.
Thus 𝑥 ∼ 𝑥 .

• Symmetric: If 𝑥 ∼ 𝑦 then 𝑥 − 𝑦 ∈ ℤ. But then
also

−(𝑥 − 𝑦) = 𝑦 − 𝑥 ∈ ℤ
and so 𝑦 ∼ 𝑥 .

• Transitive: Suppose 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧. Then
𝑥 − 𝑦 ∈ ℤ and 𝑦 − 𝑧 ∈ ℤ .
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Thus, we have

𝑥 − 𝑧 = (𝑥 − 𝑦) + (𝑦 − 𝑧) ∈ ℤ

showing that 𝑥 ∼ 𝑧.
Thus, we have shown that 𝑅 is an equivalence rela-
tion on ℚ.

2. Note that

𝑥 ∼ 𝑦 ⟺ ∃𝑛 ∈ ℤ s.t. 𝑦 = 𝑥 + 𝑛 .

Therefore the equivalence classes with respect to ∼
are

[𝑥] = {𝑥 + 𝑛 ∶ 𝑛 ∈ ℤ} .
Each equivalence class has exactly one element in
[0, 1) ∩ ℚ, meaning that:

∀𝑥 ∈ ℚ , ∃! 𝑞 ∈ ℚ s.t. 0 ≤ 𝑞 < 1 and 𝑞 ∈ [𝑥] . (1.9)

Indeed: take 𝑥 ∈ ℚ arbitrary. Then 𝑥 ∈ [𝑛, 𝑛 + 1) for
some 𝑛 ∈ ℤ. Setting 𝑞 ∶= 𝑥 − 𝑛 we obtain that

𝑥 = 𝑞 + 𝑛 , 𝑞 ∈ [0, 1) ,

proving (1.9). In particular (1.9) implies that for each
𝑥 ∈ ℚ there exists 𝑞 ∈ [0, 1) ∩ ℚ such that

[𝑥] = [𝑞] .

3. From Point 2 we conclude that

ℚ/𝑅 = {[𝑥] ∶ 𝑥 ∈ ℚ} = {𝑞 ∈ ℚ ∶ 0 ≤ 𝑞 < 1} .

Definition 1.18: Partial order

A binary relation 𝑅 on 𝐴 is called a partial order if it
satisfies the following properties:

1. Reflexive: For each 𝑥 ∈ 𝐴 one has

(𝑥, 𝑥) ∈ 𝑅 ,

2. Antisymmetric: We have

(𝑥, 𝑦) ∈ 𝑅 and (𝑦 , 𝑥) ∈ 𝑅 ⟹ 𝑥 = 𝑦

3. Transitive: We have

(𝑥, 𝑦) ∈ 𝑅 , (𝑦 , 𝑧) ∈ 𝑅 ⟹ (𝑥, 𝑧) ∈ 𝑅

Definition 1.19: Total order

A binary relation 𝑅 on 𝐴 is called a total order relation
if it satisfies the following properties:

1. Partial order: 𝑅 is a partial order on 𝐴.
2. Total: For each 𝑥, 𝑦 ∈ 𝐴 we have

(𝑥, 𝑦) ∈ 𝑅 or (𝑦 , 𝑥) ∈ 𝑅 .

Example 1.20: Set inclusion is a partial order but not
total order

Question. Let Ω be a non-empty set and consider its
power set

𝒫 (Ω) = {𝐴 ∶ 𝐴 ⊆ Ω} .
The inclusion defines binary relation on 𝒫 (Ω) × 𝒫 (Ω),
via

𝑅 ∶= {(𝐴, 𝐵) ∈ 𝒫 (Ω) × 𝒫 (Ω) ∶ 𝐴 ⊆ 𝐵} .

1. Prove that 𝑅 is an order relation.
2. Prove that 𝑅 is not a total order.

Solution.

1. Check that 𝑅 is a partial order relation on 𝒫 (Ω):
• Reflexive: It holds, since 𝐴 ⊆ 𝐴 for all 𝐴 ∈
𝒫 (Ω).

• Antisymmetric: If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, then 𝐴 =
𝐵.

• Transitive: If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 , then, by defini-
tion of inclusion, 𝐴 ⊆ 𝐶 .

2. In general, 𝑅 is not a total order. For example con-
sider

Ω = {𝑥, 𝑦} .
Thus

𝒫 (Ω) = {∅, {𝑥}, {𝑦}, {𝑥, 𝑦}} .
If we pick 𝐴 = {𝑥} and 𝐵 = {𝑦} then 𝐴 ∩ 𝐵 = ∅,
meaning that

𝐴 ⊈ 𝐵 , 𝐵 ⊈ 𝐴 .

This shows 𝑅 is not a total order.

Example 1.21: Inequality is a total order

Question. Consider the binary relation

𝑅 ∶= {(𝑥, 𝑦) ∈ ℚ × ℚ ∶ 𝑥 ≤ 𝑦} .

Prove that 𝑅 is a total order relation.
Solution. We need to check that:
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1. Reflexive: It holds, since 𝑥 ≤ 𝑥 for all 𝑥 ∈ ℚ,

2. Antisymmetric: If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 then 𝑥 = 𝑦 .
3. Transitive: If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 then 𝑥 ≤ 𝑧.

Finally, we halso have that 𝑅 is a total order on ℚ, since
for all 𝑥, 𝑦 ∈ ℚ we have

𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 .

1.3 Induction

Definition 1.22: Principle of Inducion

Let 𝛼(𝑛) be a statement which depends on 𝑛 ∈ ℕ. Suppose
that

1. 𝛼(1) is true, and
2. Whenever 𝛼(𝑛) is true, then 𝛼(𝑛 + 1) is true.

Then 𝛼(𝑛) is true for all 𝑛 ∈ ℕ.

Example 1.23: Formula for summing first 𝑛 natural
numbers

Question. Prove by induction that the following formula
holds for all 𝑛 ∈ ℕ:

1 + 2 + 3 + … + (𝑛 − 1) + 𝑛 = 𝑛(𝑛 + 1)
2 . (1.10)

Solution. Define

𝑆(𝑛) = 1 + 2 + … + 𝑛 .

This way the formula at (1.10) is equivalent to

𝑆(𝑛) = 𝑛(𝑛 + 1)
2 , ∀ 𝑛 ∈ ℕ .

1. It is immediate to check that (1.10) holds for 𝑛 = 1.
2. Suppose (1.10) holds for 𝑛 = 𝑘. Then

𝑆(𝑘 + 1) = 1 + … + 𝑘 + (𝑘 + 1) (1.11)

= 𝑆(𝑘) + (𝑘 + 1) (1.12)

= 𝑘(𝑘 + 1)
2 + (𝑘 + 1) (1.13)

= 𝑘(𝑘 + 1) + 2(𝑘 + 1)
2 (1.14)

= (𝑘 + 1)(𝑘 + 2)
2 (1.15)

where in the first equality we used that (1.10) holds
for 𝑛 = 𝑘. We have proven that

𝑆(𝑘 + 1) = (𝑘 + 1)(𝑘 + 2)
2 .

The RHS in the above expression is exactly the RHS
of (1.10) computed at 𝑛 = 𝑘 + 1. Therefore, we have
shown that formula (1.10) holds for 𝑛 = 𝑘 + 1.

By the Principle of Induction, we conclude that (1.10)
holds for all 𝑛 ∈ ℕ.

Example 1.24: Bernoulli’s inequality

Question. Let 𝑥 ∈ ℝ with 𝑥 > −1. Bernoulli’s inequality
states that

(1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥 , ∀ 𝑛 ∈ ℕ . (1.16)

Prove Bernoulli’s inequality by induction.
Solution. Let 𝑥 ∈ ℝ, 𝑥 > −1. We prove the statement by
induction:

• Base case: (1.16) holds with equality when 𝑛 = 1.
• Induction hypothesis: Let 𝑘 ∈ ℕ and suppose that
(1.16) holds for 𝑛 = 𝑘, i.e.,

(1 + 𝑥)𝑘 ≥ 1 + 𝑘𝑥 .

Then

(1 + 𝑥)𝑘+1 = (1 + 𝑥)𝑘(1 + 𝑥)
≥ (1 + 𝑘𝑥)(1 + 𝑥)
= 1 + 𝑘𝑥 + 𝑥 + 𝑘𝑥2
≥ 1 + (𝑘 + 1)𝑥 ,

where we used that 𝑘𝑥2 ≥ 0. Then (1.16) holds for
𝑛 = 𝑘 + 1.

By induction we conclude (1.16).
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1.4 Absolute value

Definition 1.25: Absolute value

For 𝑥 ∈ ℝ we define its absolute value as the quantity

|𝑥| = {𝑥 if 𝑥 ≥ 0
−𝑥 if 𝑥 < 0

Proposition 1.26

For all 𝑥 ∈ ℝ they hold:

1. |𝑥| ≥ 0.
2. |𝑥| = 0 if and only if 𝑥 = 0.
3. |𝑥| = | − 𝑥|.

Lemma 1.27

Let 𝑥, 𝑦 ∈ ℝ. Then

|𝑥 | ≤ 𝑦 ⟺ −𝑦 ≤ 𝑥 ≤ 𝑦 .

Corollary 1.28

Let 𝑥, 𝑦 ∈ ℝ. Then

|𝑥 | < 𝑦 ⟺ −𝑦 < 𝑥 < 𝑦 .

Theorem 1.29: Triangle inequality

For every 𝑥, 𝑦 ∈ ℝ we have

||𝑥| − |𝑦 || ≤ |𝑥 + 𝑦| ≤ |𝑥| + |𝑦 | . (1.17)

Proposition 1.30

For any 𝑥, 𝑦 ∈ ℝ it holds

||𝑥| − |𝑦 || ≤ |𝑥 − 𝑦| ≤ |𝑥| + |𝑦 | . (1.18)

Moreover for any 𝑥, 𝑦 , 𝑧 ∈ ℝ it holds

|𝑥 − 𝑦| ≤ |𝑥 − 𝑧| + |𝑧 − 𝑦| .
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2 Real Numbers

2.1 Fields

Definition 2.1: Binary operation

A binary operation on a set 𝐾 is a function

∘ ∶ 𝐾 × 𝐾 → 𝐾

which maps the ordered pair (𝑥, 𝑦) into 𝑥 ∘ 𝑦 .
Definition 2.2

Let 𝐾 be a set and ∘ ∶ 𝐾 × 𝐾 → 𝐾 be a binary operation
on 𝐾 . We say that:

1. ∘ is commutative if

𝑥 ∘ 𝑦 = 𝑦 ∘ 𝑥 , ∀ 𝑥, 𝑦 ∈ 𝐾

2. ∘ is associative if

(𝑥 ∘ 𝑦) ∘ 𝑧 = 𝑥 ∘ (𝑦 ∘ 𝑧) , ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝐾

3. An element 𝑒 ∈ 𝐾 is called neutral element of ∘ if

𝑥 ∘ 𝑒 = 𝑒 ∘ 𝑥 = 𝑥 , ∀ 𝑥 ∈ 𝐾

4. Let 𝑒 be a neutral element of ∘ and let 𝑥 ∈ 𝐾 . An
element 𝑦 ∈ 𝐾 is called an inverse of 𝑥 with respect
to ∘ if

𝑥 ∘ 𝑦 = 𝑦 ∘ 𝑥 = 𝑒 .
Example 2.3

Question. Let 𝐾 = {0, 1} be a set with binary operation ∘
defined by the table

∘ 0 1
0 1 1
1 0 0

1. Is ∘ commutative? Justify your answer.

2. Is ∘ associative? Justify your answer.

Solution.

1. We have
0 ∘ 1 = 1 , 1 ∘ 0 = 0

and therefore
0 ∘ 1 ≠ 1 ∘ 0 .

showing that ∘ is not commutative.

2. We have
(0 ∘ 1) ∘ 1 = 1 ∘ 1 = 0 ,

while
0 ∘ (1 ∘ 1) = 0 ∘ 0 = 1 ,

so that
(0 ∘ 1) ∘ 1 ≠ 0 ∘ (1 ∘ 1) .

Thus, ∘ is not associative.

Definition 2.4: Field

Let 𝐾 be a set with binary operations of addition

+ ∶ 𝐾 × 𝐾 → 𝐾 , (𝑥, 𝑦) ↦ 𝑥 + 𝑦
and multiplication

⋅ ∶ 𝐾 × 𝐾 → 𝐾 , (𝑥, 𝑦) ↦ 𝑥 ⋅ 𝑦 = 𝑥𝑦 .
We call the triple (𝐾, +, ⋅) a field if:

1. The addition + satisfies: ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝐾
• (A1) Commutativity and Associativity:

𝑥 + 𝑦 = 𝑦 + 𝑥
(𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)

• (A2) Additive Identity: There exists a neu-
tral element in 𝐾 for +, which we call 0. It
holds:

𝑥 + 0 = 0 + 𝑥 = 𝑥
• (A3) Additive Inverse: There exists an in-
verse of 𝑥 with respect to +. We call this el-
ement the additive inverse of 𝑥 and denote it
by −𝑥 . It holds

𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0
2. The multiplication ⋅ satisifes: ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝐾

• (M1) Commutativity and Associativity:

𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥
(𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧)
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• (M2) Multiplicative Identity: There exists a
neutral element in 𝐾 for ⋅, which we call 1. It
holds:

𝑥 ⋅ 1 = 1 ⋅ 𝑥 = 𝑥
• (M3) Multiplicative Inverse: If 𝑥 ≠ 0 there
exists an inverse of 𝑥 with respect to ⋅. We call
this element the multiplicative inverse of 𝑥
and denote it by 𝑥−1. It holds

𝑥 ⋅ 𝑥−1 = 𝑥−1 ⋅ 𝑥 = 1

3. The operations + and ⋅ are related by

• (AM) Distributive Property: ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝐾

𝑥 ⋅ (𝑦 + 𝑧) = (𝑥 ⋅ 𝑦) + (𝑦 ⋅ 𝑧) .

Theorem 2.5

Consider the setsℕ,ℤ,ℚwith the usual operations+ and
⋅. We have:

• (ℕ, +, ⋅) is not a field.

• (ℤ, +, ⋅) is not a field.

• (ℚ, +, ⋅) is a field.

Theorem 2.6

Let 𝐾 with + and ⋅ defined by

+ 0 1
0 0 1
1 1 0

⋅ 0 1
0 0 0
1 0 1

Then (𝐾, +, ⋅) is a field.

Proposition 2.7: Uniqueness of neutral elements and
inverses

Let (𝐾, +, ⋅) be a field. Then

1. There is a unique element in 𝐾 with the property of
0.

2. There is a unique element in 𝐾 with the property of
1.

3. For all 𝑥 ∈ 𝐾 there is a unique additive inverse −𝑥 .
4. For all 𝑥 ∈ 𝐾 , 𝑥 ≠ 0, there is a unique multiplicative

inverse 𝑥−1.

Proof

1. Suppose that 0 ∈ 𝐾 and 0̃ ∈ 𝐾 are both neutral ele-
ment of +, that is, they both satisfy (A2). Then

0 + 0̃ = 0

since 0̃ is a neutral element for +. Moreover

0̃ + 0 = 0̃

since 0 is a neutral element for +. By commutativity
of +, see property (A1), we have

0 = 0 + 0̃ = 0̃ + 0 = 0̃ ,

showing that 0 = 0̃. Hence the neutral element for
+ is unique.

2. Exercise.
3. Let 𝑥 ∈ 𝐾 and suppose that 𝑦, ̃𝑦 ∈ 𝐾 are both ad-

ditive inverses of 𝑥 , that is, they both satisfy (A3).
Therefore

𝑥 + 𝑦 = 0
since 𝑦 is an additive inverse of 𝑥 and

𝑥 + ̃𝑦 = 0

since ̃𝑦 is an additive inverse of 𝑥 . Therefore we can
use commutativity and associativity and of +, see
property (A1), and the fact that 0 is the neutral el-
ement of +, to infer

𝑦 = 𝑦 + 0 = 𝑦 + (𝑥 + ̃𝑦)
= (𝑦 + 𝑥) + ̃𝑦 = (𝑥 + 𝑦) + ̃𝑦
= 0 + ̃𝑦 = ̃𝑦 ,

concluding that 𝑦 = ̃𝑦 . Thus there is a unique addi-
tive inverse of 𝑥 , and

𝑦 = ̃𝑦 = −𝑥 ,

with −𝑥 the element from property (A3).
4. Exercise.

Definition 2.8

Let 𝐾 be a set with binary operations + and ⋅, and with
an order relation ≤. We call (𝐾, +, ⋅, ≤) an ordered field
if:

1. (𝐾, +, ⋅) is a field

2. There ≤ is of total order on 𝐾 : ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝐾
• (O1) Reflexivity:

𝑥 ≤ 𝑥
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• (O2) Antisymmetry:

𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 ⟹ 𝑥 = 𝑦

• (O3) Transitivity:

𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 ⟹ 𝑥 = 𝑧

• (O4) Total order:

𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥
3. The operations + and ⋅, and the total order ≤, are

related by the following properties: ∀𝑥, 𝑦 , 𝑧 ∈ 𝐾
• (AM) Distributive: Relates addition and mul-
tiplication via

𝑥 ⋅ (𝑦 + 𝑧) = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧

• (AO) Relates addition and order with the re-
quirement:

𝑥 ≤ 𝑦 ⟹ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧

• (MO) Relates multiplication and order with the
requirement:

𝑥 ≥ 0, 𝑦 ≥ 0 ⟹ 𝑥 ⋅ 𝑦 ≥ 0

Theorem 2.9

(ℚ, +, ⋅, ≤) is an ordered field.

2.2 Supremum and infimum

Definition 2.10: Upper bound, bounded above, supre-
mum, maximum

Let 𝐴 ⊆ 𝐾 :

1. We say that 𝑏 ∈ 𝐾 is an upper bound for 𝐴 if

𝑎 ≤ 𝑏 , ∀ 𝑎 ∈ 𝐴 .

2. We say that 𝐴 is bounded above if there exists and
upper bound 𝑏 ∈ 𝐾 for 𝐴.

3. We say that 𝑠 ∈ 𝐾 is the least upper bound or
supremum of 𝐴 if:

• 𝑠 is an upper bound for 𝐴,

• 𝑠 is the smallest upper bound of 𝐴, that is,

If 𝑏 ∈ 𝐾 is upper bound for 𝐴 then 𝑠 ≤ 𝑏 .

If it exists, the supremum is denoted by

𝑠 = sup 𝐴 .

4. Let 𝐴 ⊆ 𝐾 . We say that 𝑀 ∈ 𝐾 is the maximum of
𝐴 if:

𝑀 ∈ 𝐴 and 𝑎 ≤ 𝑀 , ∀𝑎 ∈ 𝐴 .
If it exists, we denote the maximum by

𝑀 = max𝐴 .

Remark 2.11

Note that if a set 𝐴 ⊆ 𝐾 in NOT bounded above, then the
supremum does not exist, as there are no upper bounds
of 𝐴.

Proposition 2.12: Relationship between Max and Sup

Let 𝐴 ⊆ 𝐾 . If the maximum of 𝐴 exists, then also the
supremum exists, and

sup𝐴 = max𝐴 .

Definition 2.13: Upper bound, bounded below, infi-
mum, minimum

Let 𝐴 ⊆ 𝐾 :

1. We say that 𝑙 ∈ 𝐾 is a lower bound for 𝐴 if

𝑙 ≤ 𝑎 , ∀ 𝑎 ∈ 𝐴 .

2. We say that 𝐴 is bounded below if there exists a
lower bound 𝑙 ∈ 𝐾 for 𝐴.

3. We say that 𝑖 ∈ 𝐾 is the greatest lower bound or
infimum of 𝐴 if:

• 𝑖 is a lower bound for 𝐴,
• 𝑖 is the largest lower bound of 𝐴, that is,

If 𝑙 ∈ 𝐾 is a lower bound for 𝐴 then 𝑙 ≤ 𝑖 .
If it exists, the infimum is denoted by

𝑖 = inf𝐴 .
4. We say that 𝑚 ∈ 𝐾 is the minimum of 𝐴 if:

𝑚 ∈ 𝐴 and 𝑚 ≤ 𝑎 , ∀𝑎 ∈ 𝐴 .

12



If it exists, we denote the minimum by

𝑚 = min𝐴 .

Proposition 2.14

Let 𝐴 ⊆ 𝐾 . If the minimum of 𝐴 exists, then also the
infimum exists, and

inf𝐴 = min𝐴 .

Proposition 2.15

Let 𝐴 ⊆ 𝐾 . If inf𝐴 and sup𝐴 exist, then

inf𝐴 ≤ 𝑎 ≤ sup𝐴 , ∀ 𝑎 ∈ 𝐴 .

Proposition 2.16: Relationship between sup and inf

Let 𝐴 ⊆ 𝐾 . Define

−𝐴 ∶= {−𝑎 ∶ 𝑎 ∈ 𝐴} .

They hold

1. If sup𝐴 exists, then inf𝐴 exists and

inf(−𝐴) = − sup𝐴 .

2. If inf𝐴 exists, then sup𝐴 exists and

sup(−𝐴) = − inf𝐴 .

2.3 Axioms of Real Numbers

Definition 2.17: Completeness

Let (𝐾, +, ⋅, ≤) be an ordered field. We say that 𝐾 is com-
plete if it holds the property:

• (AC) For every 𝐴 ⊆ 𝐾 non-empty and bounded
above

sup𝐴 ∈ 𝐾 .

Theorem 2.18

ℚ is not complete. In particular, there exists a set 𝐴 ⊆ ℚ
such that

• 𝐴 is non-empty,

• 𝐴 is bounded above,
• sup𝐴 does not exist in ℚ.

One of such sets is, for example,

𝐴 = {𝑞 ∈ ℚ ∶ 𝑞 ≥ 0 , 𝑞2 < 2} .
Proposition 2.19

Let (𝐾, +, ⋅, ≤) be a complete ordered field. Suppose that
𝐴 ⊆ 𝐾 is non-empty and bounded below. Then

inf𝐴 ∈ 𝐾 .

Definition 2.20: System of Real Numbers ℝ
A system of Real Numbers is a set ℝ with two operations
+ and ⋅, and a total order relation ≤, such that

• (ℝ, +, ⋅, ≤) is an ordered field

• ℝ sastisfies the Axiom of Completeness

2.3.1 Inductive sets

Definition 2.21: Inductive set

Let 𝑆 ⊆ ℝ. We say that 𝑆 is an inductive set if they are
satisfied:

• 1 ∈ 𝑆,
• If 𝑥 ∈ 𝑆, then (𝑥 + 1) ∈ 𝑆.

Example 2.22

Question. Prove the following:

1. ℝ is an inductive set.

2. The set 𝐴 = {0, 1} is not an inductive set.

Solution.

1. We have that 1 ∈ ℝ by axiom (M2). Moreover (𝑥 +
1) ∈ ℝ for every 𝑥 ∈ ℝ, by definition of sum +.

2. We have 1 ∈ 𝐴, but (1 + 1) ∉ 𝐴, since 1 + 1 ≠ 0.
13



Proposition 2.23

Let ℳ be a collection of inductive subsets of ℝ. Then

𝑆 ∶= ⋂
𝑀∈ℳ

𝑀

is an inductive subset of ℝ.

Definition 2.24: Set of Natural Numbers

Let ℳ be the collection of all inductive subsets of ℝ. We
define the set of natural numbers in ℝ as

ℕ ∶= ⋂
𝑀∈ℳ

𝑀 .

Proposition 2.25: ℕℝ is the smallest inductive subset
of ℝ
Let 𝐶 ⊆ ℝ be an inductive subset. Then

ℕ ⊆ 𝐶 .

In other words, ℕ is the smallest inductive set in ℝ.

Theorem 2.26

Let 𝑥 ∈ ℕ. Then
𝑥 ≥ 1 .
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3 Properties of ℝ
Theorem 3.1: Archimedean Property

Let 𝑥 ∈ ℝ be given. Then:

1. There exists 𝑛 ∈ ℕ such that

𝑛 > 𝑥 .

2. Suppose in addition that 𝑥 > 0. There exists 𝑛 ∈ ℕ
such that 1

𝑛 < 𝑥 .

Theorem 3.2: Archimedean Property (Alternative for-
mulation)

Let 𝑥, 𝑦 ∈ ℝ, with 0 < 𝑥 < 𝑦 . There exists 𝑛 ∈ ℕ such that

𝑛𝑥 > 𝑦 .

Theorem 3.3: Nested Interval Property

For each 𝑛 ∈ ℕ assume given a closed interval

𝐼𝑛 ∶= [𝑎𝑛, 𝑏𝑛] = {𝑥 ∈ ℝ ∶ 𝑎𝑛 ≤ 𝑥 ≤ 𝑏𝑛} .

Suppose that the intervals are nested, that is,

𝐼𝑛 ⊃ 𝐼𝑛+1 , ∀ 𝑛 ∈ ℕ .

Then ∞
⋂
𝑛=1

𝐼𝑛 ≠ ∅ . (3.1)

Example 3.4

Question. Consider the open intervals

𝐼𝑛 ∶= (0, 1𝑛) .

These are clearly nested

𝐼𝑛 ⊃ 𝐼𝑛+1 , ∀ 𝑛 ∈ ℕ .

Prove that ∞
⋂
𝑛=1

𝐼𝑛 = ∅ . (3.2)

Solution. Suppose by contradiction that the intersection
is non-empty. Then there exists 𝑥 ∈ ℕ such that

𝑥 ∈ 𝐼𝑛 , ∀ 𝑛 ∈ ℕ .

By definition of 𝐼𝑛 the above reads

0 < 𝑥 < 1
𝑛 , ∀ 𝑛 ∈ ℕ . (3.3)

Since 𝑥 > 0, by the Archimedean Property in Theorem
3.1 Point 2, there exists 𝑛0 ∈ ℕ such that

0 < 1
𝑛0

< 𝑥 .

The above contradicts (3.3). Therefore (3.2) holds.

3.1 Revisiting Sup and Inf

Proposition 3.5: Characterization of Supremum

Let 𝐴 ⊆ ℝ be a non-empty set. Suppose that 𝑠 ∈ ℝ is an
upper bound for 𝐴. They are equivalent:

1. 𝑠 = sup𝐴
2. For every 𝜀 > 0 there exists 𝑥 ∈ 𝐴 such that

𝑠 − 𝜀 < 𝑥 .

Proposition 3.6: Characterization of Infimum

Let 𝐴 ⊆ ℝ be a non-empty set. Suppose that 𝑖 ∈ ℝ is a
lower bound for 𝐴. They are equivalent:

1. 𝑖 = inf𝐴
2. For every 𝜀 ∈ ℝ, with 𝜀 > 0, there exists 𝑥 ∈ 𝐴 such

that
𝑥 < 𝑖 + 𝜀 .

Proposition 3.7

Let 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏. Let

𝐴 ∶= (𝑎, 𝑏) = {𝑥 ∈ ℝ ∶ 𝑎 < 𝑥 < 𝑏} .
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Then
inf𝐴 = 𝑎 , sup𝐴 = 𝑏 .

Corollary 3.8

Let 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏. Let

𝐴 ∶= (𝑎, 𝑏) = {𝑥 ∈ ℝ ∶ 𝑎 < 𝑥 < 𝑏} .

Then min𝐴 and max𝐴 do not exist.

Corollary 3.9

Let 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏. Let

𝐴 ∶= [𝑎, 𝑏) = {𝑥 ∈ ℝ ∶ 𝑎 ≤ 𝑥 < 𝑏} .

Then
min𝐴 = inf𝐴 = 𝑎 , sup𝐴 = 𝑏 ,

max𝐴 does not exist.

Proposition 3.10

Define the set

𝐴 ∶= {1𝑛 ∶ 𝑛 ∈ ℕ} .

Then
inf𝐴 = 0 , sup𝐴 = max𝐴 = 1 .

Proof

Part 1. We have

1
𝑛 ≤ 1 , ∀ 𝑛 ∈ ℕ .

Therefore 1 is an upper bound for 𝐴. Since 1 ∈ 𝐴, by
definition of maximum we conclude that

max𝐴 = 1 .
Since the maximum exists, we conclude that also the
supremum exists, and

sup𝐴 = max𝐴 = 1 .
Part 2. We have

1
𝑛 > 0 , ∀ 𝑛 ∈ ℕ ,

showing that 0 is a lower bound for𝐴. Suppose by contra-
diction that 0 is not the infimum. Therefore 0 is not the
largest lower bound. Then there exists 𝜀 ∈ ℝ such that:

• 𝜀 is a lower bound for 𝐴, that is,

𝜀 ≤ 1
𝑛 , ∀ 𝑛 ∈ ℕ , (3.4)

• 𝜀 is larger than 0:
0 < 𝜀 .

As 𝜀 > 0, by the Archimedean Property there exists 𝑛0 ∈
ℕ such that

0 < 1
𝑛0

< 𝜀 .

This contradicts (3.4). Thus 0 is the largest lower bound
of 𝐴, that is, 0 = inf𝐴.
Part 3. Wehave that min𝐴 does not exist. Indeed suppose
by contradiction that min𝐴 exists. Then

min𝐴 = inf𝐴 .

As inf𝐴 = 0 by Part 2, we conclude min𝐴 = 0. As
min𝐴 ∈ 𝐴, we obtain 0 ∈ 𝐴, which is a contradiction.

3.2 Cardinality

Definition 3.11: Cardinality, Finite, Countable, Un-
countable

Let 𝑋 be a set. The cardinality of 𝑋 is the number of
elements in 𝑋 . We denote the cardinality of 𝑋 by

|𝑋 | ∶= # of elements in 𝑋 .

Further, we say that:

1. 𝑋 is finite if there exists a natural number 𝑛 ∈ ℕ
and a bijection

𝑓 ∶ {1, 2, … , 𝑛} → 𝑋 .

In particular
|𝑋 | = 𝑛 .

2. 𝑋 is countable if there exists a bijection

𝑓 ∶ ℕ → 𝑋 .

In this case we denote the cardinality of 𝑋 by

|𝑋 | = |ℕ| .

3. 𝑋 is uncountable if 𝑋 is neither finite, nor count-
able.
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Proposition 3.12

Let 𝑋 be a countable set and 𝐴 ⊆ 𝑋 . Then either 𝐴 is
finite or countable.

Example 3.13

Question. Prove that 𝑋 = {𝑎, 𝑏, 𝑐} is finite.
Solution. Set 𝑌 = {1, 2, 3}. The function 𝑓 ∶ 𝑋 → 𝑌
defined by

𝑓 (1) = 𝑎 , 𝑓 (2) = 𝑏 , 𝑓 (3) = 𝑐 ,

is bijective. Therefore 𝑋 is finite, with |𝑋 | = 3.

Example 3.14

Question. Prove that the set of natural numbers ℕ is
countable.
Solution. The function 𝑓 ∶ 𝑋 → ℕ defined by

𝑓 (𝑛) ∶= 𝑛 ,

is bijective. Therefore 𝑋 = ℕ is countable.

Example 3.15

Question. Let 𝑋 be the set of even numbers

𝑋 = {2𝑛 ∶ 𝑛 ∈ ℕ} .

Prove that 𝑋 is countable.
Solution. Define the map 𝑓 ∶ ℕ → 𝑋 by

𝑓 (𝑛) ∶= 2𝑛 .

We have that:

1. 𝑓 is injective, because

𝑓 (𝑚) = 𝑓 (𝑘) ⟹ 2𝑚 = 2𝑘 𝑚 = 𝑘 .

2. 𝑓 is surjective: Suppose that 𝑚 ∈ 𝑋 . By definition of
𝑋 , there exists 𝑛 ∈ ℕ such that 𝑚 = 2𝑛. Therefore,
𝑓 (𝑛) = 𝑚.

We have shown that 𝑓 is bijective. Thus, 𝑋 is countable.

Example 3.16

Question. Prove that the set of integers ℤ is countable.

Solution. Define 𝑓 ∶ ℕ → ℤ by

𝑓 (𝑛) ∶= {
𝑛
2 if 𝑛 even

−𝑛 + 1
2 if 𝑛 odd

For example

𝑓 (0) = 0 , 𝑓 (1) = −1 , 𝑓 (2) = 1 , 𝑓 (3) = −2 ,
𝑓 (4) = 2 , 𝑓 (5) = −3 , 𝑓 (6) = 3 , 𝑓 (7) = −4 .

We have:

1. 𝑓 is injective: Indeed, suppose that 𝑚 ≠ 𝑛. If 𝑛 and
𝑚 are both even or both odd we have, respectively

𝑓 (𝑚) = 𝑚
2 ≠ 𝑛

2 = 𝑓 (𝑛)

𝑓 (𝑚) = −𝑚 + 1
2 ≠ −𝑛 + 1

2 = 𝑓 (𝑛) .

If instead 𝑚 is even and 𝑛 is odd, we get

𝑓 (𝑚) = 𝑚
2 ≠ −𝑛 + 1

2 = 𝑓 (𝑛) ,

since the LHS is positive and the RHS is negative.
The case when 𝑚 is odd and 𝑛 even is similar.

2. 𝑓 is surjective: Let 𝑧 ∈ ℤ. If 𝑧 ≥ 0, then 𝑚 ∶= 2𝑧
belongs to ℕ, is even, and

𝑓 (𝑚) = 𝑓 (2𝑧) = 𝑧 .

If instead 𝑧 < 0, then 𝑚 ∶= −2𝑧 − 1 belongs to ℕ, is
odd, and

𝑓 (𝑚) = 𝑓 (−2𝑧 − 1) = 𝑧 .

Therefore 𝑓 is bijective, showing that ℤ is countable.

Proposition 3.17

Let the set 𝐴𝑛 be countable for all 𝑛 ∈ ℕ. Define

𝐴 = ⋃
𝑛∈ℕ

𝐴𝑛 .

Then 𝐴 is countable.

Theorem 3.18: ℚ is countable

The set of rational numbers ℚ is countable.
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Theorem 3.19: ℝ is uncountable

The set of Real Numbers ℝ is uncountable.

Theorem 3.20

The set of irrational numbers

ℐ ∶= ℝ ∖ ℚ

is uncountable.

Proof

We know that ℝ in uncountable and ℚ is countable. Sup-
pose by contradiction that ℐ is countable. Then

ℚ ∪ ℐ

is countable by Proposition 3.17, being union of countable
sets. Since by definition

ℝ = ℚ ∪ ℐ ,

we conclude that ℝ is countable. Contradiction.
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4 Complex Numbers

Definition 4.1: Complex Numbers

The set of complex numbers ℂ is defined as

ℂ ∶= ℝ + 𝑖ℝ ∶= {𝑥 + 𝑖𝑦 ∶ 𝑥, 𝑦 ∈ ℝ} .
For a complex number

𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ

we say that

• 𝑥 is the real part of 𝑧, and denote it by

𝑥 = Re(𝑧)

• 𝑦 is the imaginary part of 𝑧, and denote it by

𝑦 = Im(𝑧)

We say that

• If Re 𝑧 = 0 then 𝑧 is a purely imaginary number.
• If Im 𝑧 = 0 then 𝑧 is a real number.

Definition 4.2: Addition and multiplication in ℂ
Let 𝑧1, 𝑧2 ∈ ℂ, so that

𝑧1 = 𝑥1 + 𝑖𝑦1 , 𝑧2 = 𝑥2 + 𝑖𝑦2 ,

for some 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ ℝ:

1. The sum of 𝑧1 and 𝑧2 is

𝑧1 + 𝑧2 ∶= (𝑥1 + 𝑥2) + 𝑖 (𝑦1 + 𝑦2) .

2. The multiplication of 𝑧1 and 𝑧2 is

𝑧1 ⋅ 𝑧2 ∶= (𝑥1 ⋅ 𝑥2 − 𝑦1 ⋅ 𝑦2) + 𝑖 (𝑥1 ⋅ 𝑦2 + 𝑥2 ⋅ 𝑦1) ,

Example 4.3

Question. Compute 𝑧𝑤 , where

𝑧 = −2 + 3𝑖 , 𝑤 = 1 − 𝑖 .

Solution. Using the definition we compute

𝑧 ⋅ 𝑤 = (−2 + 3𝑖) ⋅ (1 − 𝑖)
= (−2 − (−3)) + (2 + 3)𝑖
= 1 + 5𝑖 .

Alternatively, we can proceed formally: We just need to
recall that 𝑖2 has to be replaced with −1:

𝑧 ⋅ 𝑤 = (−2 + 3𝑖) ⋅ (1 − 𝑖)
= −2 + 2𝑖 + 3𝑖 − 3𝑖2
= (−2 + 3) + (2 + 3)𝑖
= 1 + 5𝑖 .

Proposition 4.4: Additive inverse in ℂ
The neutral element of addition in ℂ is the number

0 ∶= 0 + 0𝑖 .

For any 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ, the unique additive inverse is
given by

−𝑧 ∶= −𝑥 − 𝑖𝑦 .

Proposition 4.5: Multiplicative inverse in ℂ
The neutral element of multiplication in ℂ is the number

1 ∶= 1 + 0𝑖 .

For any 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ, the unique multiplicative inverse
is given by

𝑧−1 ∶= 𝑥
𝑥2 + 𝑦2 + 𝑖 −𝑦

𝑥2 + 𝑦2 .

Proof

It is immediate to check that 1 is the neutral element of
multiplication in ℂ. For the remaining part of the state-
ment, set

𝑤 ∶= 𝑥
𝑥2 + 𝑦2 + 𝑖 −𝑦

𝑥2 + 𝑦2 .
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We need to check that 𝑧 ⋅ 𝑤 = 1

𝑧 ⋅ 𝑤 = (𝑥 + 𝑖𝑦) ⋅ ( 𝑥
𝑥2 + 𝑦2 + 𝑖 −𝑦

𝑥2 + 𝑦2 )

= ( 𝑥2
𝑥2 + 𝑦2 − 𝑦 ⋅ (−𝑦)

𝑥2 + 𝑦2 ) + 𝑖 (𝑥 ⋅ (−𝑦)
𝑥2 + 𝑦2 + 𝑥𝑦

𝑥2 + 𝑦2 )
= 1 ,

so indeed 𝑧−1 = 𝑤 .

Example 4.6

Question. Let 𝑧 = 3 + 2𝑖. Compute 𝑧−1.
Solution. By the formula in Propostion 4.5 we immedi-
ately get

𝑧−1 = 3
32 + 22 + −2

32 + 22 𝑖 =
3
13 − 2

13 𝑖 .

Alternatively, we can proceed formally:

(3 + 2𝑖)−1 = 1
3 + 2𝑖

= 1
3 + 2𝑖

3 − 2𝑖
3 − 2𝑖

= 3 − 2𝑖
32 + 22

= 3
13 − 2

13 𝑖 ,

and obtain the same result.

Theorem 4.7

(ℂ, +, ⋅) is a field.

Example 4.8

Question. Let 𝑤 = 1 + 𝑖 and 𝑧 = 3 − 𝑖. Compute 𝑤
𝑧 .

Solution. We compute 𝑤/𝑧 using the two options we
have:

1. Using the formula for the inverse from Proposition
4.5 we compute

𝑧−1 = 𝑥
𝑥2 + 𝑦2 + 𝑖 −𝑦

𝑥2 + 𝑦2
= 3

32 + 12 − 𝑖 −1
32 + 12

= 3
10 + 1

10 𝑖

and therefore

𝑤
𝑧 = 𝑤 ⋅ 𝑧−1

= (1 + 𝑖) ( 3
10 + 1

10 𝑖)

= ( 3
10 − 1

10) + ( 1
10 + 3

10) 𝑖

= 2
10 + 4

10 𝑖

= 1
5 + 2

5 𝑖

2. We proceed formally, using the multiplication by 1
trick. We have

𝑤
𝑧 = 1 + 𝑖

3 − 𝑖
= 1 + 𝑖

3 − 𝑖
3 + 𝑖
3 + 𝑖

= 3 − 1 + (3 + 1)𝑖
32 + 12

= 2
10 + 4

10 𝑖

= 1
5 + 2

5 𝑖
Definition 4.9: Complex conjugate

Let 𝑧 = 𝑥 + 𝑖𝑦 . We call the complex conjugate of 𝑧,
denoted by ̄𝑧, the complex number

̄𝑧 = 𝑥 − 𝑖𝑦 .
Theorem 4.10

For all 𝑧1, 𝑧2 ∈ ℂ it holds:

• 𝑧1 + 𝑧2 = 𝑧1 + 𝑧2
• 𝑧1 ⋅ 𝑧2 = 𝑧1 ⋅ 𝑧2

4.1 The complex plane

Definition 4.11: Modulus

The modulus of a complex number 𝑧 = 𝑥 + 𝑖𝑦 is defined
by

|𝑧| ∶= √𝑥2 + 𝑦2 .
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Definition 4.12: Distance in ℂ
Given 𝑧1, 𝑧2 ∈ ℂ, we define the distance between 𝑧1 and
𝑧2 as the quantity

|𝑧1 − 𝑧2| .

Theorem 4.13

Given 𝑧1, 𝑧2 ∈ ℂ, we have

|𝑧1 − 𝑧2| = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 .

Example 4.14

Question. Compute the distance between

𝑧 = 2 − 4𝑖 , 𝑤 = −5 + 𝑖 .

Solution. The distance is

|𝑧 − 𝑤| = |(2 − 4𝑖) − (−5 + 𝑖)|
= |7 − 5𝑖|
= √72 + (−5)2
= √74

Theorem 4.15

Let 𝑧, 𝑧1, 𝑧2 ∈ ℂ. Then

1. |𝑧1 ⋅ 𝑧2| = |𝑧1| |𝑧2|
2. |𝑧𝑛 | = |𝑧|𝑛 for all 𝑛 ∈ ℕ
3. 𝑧 ⋅ ̄𝑧 = |𝑧|2

Theorem 4.16: Triangle inequality in ℂ

For all 𝑥, 𝑦 , 𝑧 ∈ ℂ,

1. |𝑥 + 𝑦| ≤ |𝑥| + |𝑦 |
2. |𝑥 − 𝑧| ≤ |𝑥 − 𝑦| + |𝑦 − 𝑧|

Definition 4.17: Argument

Let 𝑧 ∈ ℂ. The angle 𝜃 between the line connecting the
origin and 𝑧 and the positive real axis is called the argu-
ment of 𝑧, and is denoted by

𝜃 ∶= arg(𝑧) .

Example 4.18

We have the following arguments:

arg(1) = 0 arg(𝑖) = 𝜋
2

arg(−1) = 𝜋 arg(−𝑖) = −𝜋
2

arg(1 + 𝑖) = 1
4𝜋 arg(−1 − 𝑖) = −3

4𝜋

Theorem 4.19: Polar coordinates

Let 𝑧 ∈ ℂ with 𝑧 = 𝑥 + 𝑖𝑦 and 𝑧 ≠ 0. Then

𝑥 = 𝜌 cos(𝜃) , 𝑦 = 𝜌 sin(𝜃) ,

where

𝜌 ∶= |𝑧| = √𝑥2 + 𝑦2 , 𝜃 ∶= arg(𝑧) .

Definition 4.20: Trigonometric form

Let 𝑧 ∈ ℂ. The trigonometric form of 𝑧 is

𝑧 = |𝑧| [cos(𝜃) + 𝑖 sin(𝜃)] ,

where 𝜃 = arg(𝑧).

Example 4.21

Question. Suppose that 𝑧 ∈ ℂ has polar coordinates

𝜌 = √8 , 𝜃 = 3
4𝜋 .

Therefore, the trigonometric form of 𝑧 is

𝑧 = √8 [cos (34𝜋) + 𝑖 sin (34𝜋)] .

Write 𝑧 in cartesian form.
Solution. We have

𝑥 = 𝜌 cos(𝜃) = √8 cos (34𝜋) = −√8 ⋅ √22 = −2

𝑦 = 𝜌 sin(𝜃) = √8 sin (34𝜋) = √8 ⋅ √22 = 2 .

Therefore, the cartesian form of 𝑧 is

𝑧 = 𝑥 + 𝑖𝑦 = −2 + 2𝑖 .
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Corollary 4.22: Computing arg(𝑧)

Let 𝑧 ∈ ℂ with 𝑧 = 𝑥 + 𝑖𝑦 and 𝑧 ≠ 0. Then

arg(𝑧) =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

arctan (𝑦𝑥 ) if 𝑥 > 0
arctan (𝑦𝑥 ) + 𝜋 if 𝑥 < 0 and 𝑦 ≥ 0
arctan (𝑦𝑥 ) − 𝜋 if 𝑥 < 0 and 𝑦 < 0
𝜋
2 if 𝑥 = 0 and 𝑦 > 0
−𝜋
2 if 𝑥 = 0 and 𝑦 < 0

where arctan is the inverse of tan.

Example 4.23

Question. Compute the arguments of the complex num-
bers

𝑧 = 3 + 4𝑖 , ̄𝑧 = 3 − 4𝑖 , − ̄𝑧 = −3 + 4𝑖 , −𝑧 = −3 − 4𝑖 .

Solution. Using the formula for arg in Corollary 4.22 we
have

arg(3 + 4𝑖) = arctan (43)

arg(3 − 4𝑖) = arctan (−4
3) = − arctan (43)

arg(−3 + 4𝑖) = arctan (−4
3) + 𝜋 = − arctan (43) + 𝜋

arg(−3 − 4𝑖) = arctan (43) − 𝜋

Theorem 4.24: Euler’s identity

For all 𝜃 ∈ ℝ it holds

𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃) .

Theorem 4.25

For all 𝜃 ∈ ℝ it holds

|𝑒𝑖𝜃 | = 1 .

Theorem 4.26

Let 𝑧 ∈ ℂ with 𝑧 = 𝑥 + 𝑖𝑦 and 𝑧 ≠ 0. Then

𝑧 = 𝜌𝑒𝑖𝜃 ,

where

𝜌 ∶= |𝑧| = √𝑥2 + 𝑦2 , 𝜃 ∶= arg(𝑧) .

Definition 4.27: Exponential form

The exponential form of a complex number 𝑧 ∈ ℂ is

𝑧 = 𝜌𝑒𝑖𝜃 = |𝑧| 𝑒𝑖 arg(𝑧) .

Example 4.28

Question. Write the number

𝑧 = −2 + 2𝑖

in exponential form.
Solution. From Example 4.21 we know that 𝑧 = −2 + 2𝑖
can be written in trigonometric form as

𝑧 = √8 [cos (34𝜋) + 𝑖 sin (34𝜋)] .

By Euler’s identity we hence obtain the exponential form

𝑧 = √8𝑒𝑖
3
4𝜋 .

Remark 4.29: Periodicity of exponential

For all 𝑘 ∈ ℤ we have

𝑒𝑖𝜃 = 𝑒𝑖(𝜃+2𝜋𝑘) , (4.1)

meaning that the complex exponential is 2𝜋-periodic.

Proposition 4.30

Let 𝑧, 𝑧1, 𝑧2 ∈ ℂ and suppose that

𝑧 = 𝜌𝑒𝑖𝜃 , 𝑧1 = 𝜌1𝑒𝑖𝜃1 , 𝑧2 = 𝜌2𝑒𝑖𝜃2 .

We have

𝑧1 ⋅ 𝑧2 = 𝜌1𝜌2𝑒𝑖(𝜃1+𝜃2) , 𝑧𝑛 = 𝜌𝑛𝑒𝑖𝑛𝜃 ,

for all 𝑛 ∈ ℕ.

Example 4.31

Question. Compute (−2 + 2𝑖)4.
Solution. We have two possibilities:
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1. Use the binomial theorem:

(−2 + 2𝑖)4 = (−2)4 + ( 4
1 ) (−2)3 ⋅ 2𝑖 + ( 4

2 ) (−2)2 ⋅ (2𝑖)2

+ ( 4
3 ) (−2) ⋅ (2𝑖)3 + (2𝑖)4

= 16 − 4 ⋅ 8 ⋅ 2𝑖 − 6 ⋅ 4 ⋅ 4 + 4 ⋅ 2 ⋅ 8𝑖 + 16
= 16 − 64𝑖 − 96 + 64𝑖 + 16 = −64 .

2. A much simpler calculation is possible by using the
exponential form: We know that

−2 + 2𝑖 = √8𝑒𝑖
3
4𝜋

by Example 4.28. Hence

(−2 + 2𝑖)4 = (√8𝑒𝑖
3
4𝜋)

4
= 82𝑒𝑖3𝜋 = −64 ,

where we used that

𝑒𝑖3𝜋 = 𝑒𝑖𝜋 = cos(𝜋) + 𝑖 sin(𝜋) = −1

by 2𝜋 periodicity of 𝑒𝑖𝜃 and Euler’s identity.

Definition 4.32: Complex exponential

The complex exponential of 𝑧 ∈ ℂ is defined as

𝑒𝑧 = |𝑧|𝑒𝑖𝜃 , 𝜃 = arg(𝑧) .

Theorem 4.33

Let 𝑧, 𝑤 ∈ ℂ. Then

𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤 , (𝑒𝑧)𝑤 = 𝑒𝑧𝑤 . (4.2)

Example 4.34

Question. Compute 𝑖𝑖.
Solution. We know that

|𝑖| = 1 , arg(𝑖) = 𝜋
2 .

Hence we can write 𝑖 in exponential form

𝑖 = |𝑖|𝑒𝑖 arg(𝑖) = 𝑒𝑖 𝜋2 .

Therefore

𝑖𝑖 = (𝑒𝑖
𝜋
2 )

𝑖
= 𝑒𝑖2 𝜋2 = 𝑒− 𝜋

2 .

4.2 Fundamental Theorem of Algebra

Theorem 4.35: Fundamental theorem of algebra

Let 𝑝𝑛(𝑧) be a polynomial of degree 𝑛 with complex coef-
ficients, i.e.,

𝑝𝑛(𝑧) = 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + … + 𝑎1𝑧 + 𝑎0,

for some coefficients 𝑎𝑛, … , 𝑎0 ∈ ℂ with 𝑎𝑛 ≠ 0. There
exist

𝑧1, … , 𝑧𝑛 ∈ ℂ
solutions to the polynomial equation

𝑝𝑛(𝑧) = 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + … + 𝑎1𝑧 + 𝑎0 = 0 . (4.3)

In particular, 𝑝𝑛 factorizes as

𝑝𝑛(𝑧) = 𝑎𝑛 (𝑧 − 𝑧1) (𝑧 − 𝑧2)⋯ (𝑧 − 𝑧𝑛) . (4.4)

Example 4.36

Question. Find all the complex solutions to

𝑧2 = −1 (4.5)

Solution. The equation 𝑧2 = −1 is equivalent to

𝑝(𝑧) = 0 , 𝑝(𝑧) ∶= 𝑧2 + 1 .

Since 𝑝 has degree 𝑛 = 2, the Fundamental Theorem of
Algebra tells us that there are two solutions to (4.5). We
have already seen that these two solutions are 𝑧 = 𝑖 and
𝑧 = −𝑖. Then 𝑝 factorizes as

𝑝(𝑧) = 𝑧2 + 1 = (𝑧 − 𝑖)(𝑧 + 𝑖) .

Example 4.37

Question. Find all the complex solutions to

𝑧4 − 1 = 0 . (4.6)

Solution The associated polynomial equation is

𝑝(𝑧) = 0 , 𝑝(𝑧) ∶= 𝑧4 − 1 .
Since 𝑝 has degree 𝑛 = 4, the Fundamental Theorem of
Algebra tells us that there are 4 solutions to (4.6). Let us
find such solutions. We use the well known identity

𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏) , ∀ 𝑎, 𝑏 ∈ ℝ ,
to factorize 𝑝. We get:

𝑝(𝑧) = (𝑧4 − 1) = (𝑧2 + 1)(𝑧2 − 1) .
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We know that
𝑧2 + 1 = 0

has solutions 𝑧 = ±𝑖. Instead

𝑧2 − 1 = 0
has solutions 𝑥 = ±1. Hence, the four solutions of (4.6)
are given by

𝑧 = 1, −1, 𝑖, −𝑖 ,
and 𝑝 factorizes as

𝑝(𝑧) = 𝑧4 − 1 = (𝑧 − 1)(𝑧 + 1)(𝑧 − 𝑖)(𝑧 + 𝑖) .

Definition 4.38

Suppose that the polynomial 𝑝𝑛 factorizes as

𝑝𝑛(𝑧) = 𝑎𝑛(𝑧 − 𝑧1)𝑘1(𝑧 − 𝑧2)𝑘2 ⋯(𝑧 − 𝑧𝑚)𝑘𝑚

with 𝑎𝑛 ≠ 0, 𝑧1, … , 𝑧𝑚 ∈ ℂ and 𝑘1, … , 𝑘𝑚 ∈ ℕ, 𝑘𝑖 ≥ 1. In
this case 𝑝𝑛 has degree

𝑛 = 𝑘1 + … + 𝑘𝑚 =
𝑚
∑
𝑖=1

𝑘𝑖 .

Note that 𝑧𝑖 is solves the equation

𝑝𝑛(𝑧) = 0

exactly 𝑘𝑖 times. We call 𝑘𝑖 the multiplicity of the solu-
tion 𝑧𝑖.

Example 4.39

The equation

(𝑧 − 1)(𝑧 − 2)2(𝑧 + 𝑖)3 = 0

has 6 solutions:

• 𝑧 = 1 with multiplicity 1
• 𝑧 = 2 with multiplicity 2
• 𝑧 = −𝑖 with multiplicity 3

4.3 Solving polynomial equations

Proposition 4.40: Quadratic formula

Let 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 ≠ 0 and consider the equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 . (4.7)

Define
Δ ∶= 𝑏2 − 4𝑎𝑐 ∈ ℝ .

The following hold:

1. If Δ > 0 then (4.7) has two distinct real solutions
𝑧1, 𝑧2 ∈ ℝ given by

𝑧1 = −𝑏 − √Δ
2𝑎 , 𝑧2 = −𝑏 + √Δ

2𝑎 .

2. If Δ = 0 then (4.7) has one real solution 𝑧 ∈ ℝ with
multiplicity 2. Such solution is given by

𝑧 = 𝑧1 = 𝑧2 = −𝑏
2𝑎 .

3. IfΔ < 0 then (4.7) has two distinct complex solutions
𝑧1, 𝑧2 ∈ ℂ given by

𝑧1 = −𝑏 − 𝑖√−Δ
2𝑎 , 𝑧2 = −𝑏 + 𝑖√−Δ

2𝑎 ,

where √−Δ ∈ ℝ, since −Δ > 0.

In all cases, the polynomial at (4.7) factorizes as

𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 𝑎(𝑧 − 𝑧1)(𝑧 − 𝑧2) .

Example 4.41

Question. Solve the following equations:

1. 3𝑧2 − 6𝑧 + 2 = 0
2. 4𝑧2 − 8𝑧 + 4 = 0
3. 𝑧2 + 2𝑧 + 3 = 0

Solution.

1. We have that

Δ = (−6)2 − 4 ⋅ 3 ⋅ 2 = 12 > 0
Therefore the equation has two distinct real solu-
tions, given by

𝑧 = −(−6) ± √12
2 ⋅ 3 = 6 ± √12

6 = 1 ± √3
3

In particular we have the factorization

3𝑧2 − 6𝑧 + 2 = 3 (𝑧 − 1 − √3
3 ) (𝑧 − 1 + √3

3 ) .
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2. We have that

Δ = (−8)2 − 4 ⋅ 4 ⋅ 4 = 0 .

Therefore there exists one solution with multiplicity
2. This is given by

𝑧 = −(−8)
2 ⋅ 4 = 1 .

In particular we have the factorization

4𝑧2 − 8𝑥 + 4 = 4(𝑧 − 1)2 .

3. We have

Δ = 22 − 4 ⋅ 1 ⋅ 3 = −8 < 0 .

Therefore there are two complex solutions given by

𝑧 = −2 ± 𝑖√8
2 ⋅ 1 = −1 ± 𝑖√2 .

In particular we have the factorization

𝑧2 + 2𝑧 + 3 = (𝑧 + 1 − 𝑖√2)(𝑧 + 1 + 𝑖√2) .

Proposition 4.42: Quadratic formula with complex co-
efficients

Let 𝑎, 𝑏, 𝑐 ∈ ℂ, 𝑎 ≠ 0. The two solutions to

𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0

are given by

𝑧1 =
−𝑏 + 𝑆1

2𝑎 , 𝑧2 =
−𝑏 + 𝑆2

2𝑎 ,

where 𝑆1 and 𝑆2 are the two solutions to

𝑧2 = Δ , Δ ∶= 𝑏2 − 4𝑎𝑐 .

Example 4.43

Question Find all the solutions to

1
2𝑧

2 − (3 + 𝑖)𝑧 + (4 − 𝑖) = 0 . (4.8)

Solution. We have

Δ = (−(3 + 𝑖))2 − 4 ⋅ 12 ⋅ (4 − 𝑖)
= 8 + 6𝑖 − 8 + 2𝑖
= 8𝑖 .

Therefore Δ ∈ ℂ. We have to find solutions 𝑆1 and 𝑆2 to
the equation

𝑧2 = Δ = 8𝑖 . (4.9)

We look for solutions of the form 𝑧 = 𝑎 + 𝑖𝑏. Then we
must have that

𝑧2 = (𝑎 + 𝑖𝑏)2 = 𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 = 8𝑖 .

Thus
𝑎2 − 𝑏2 = 0 , 2𝑎𝑏 = 8 .

From the first equation we conclude that |𝑎| = |𝑏|. From
the second equation we have that 𝑎𝑏 = 4, and therefore 𝑎
and 𝑏 must have the same sign. Hence 𝑎 = 𝑏, and

2𝑎𝑏 = 8 ⟹ 𝑎 = 𝑏 = ±2 .

From this we conclude that the solutions to (4.9) are

𝑆1 = 2 + 2𝑖 , 𝑆2 = −2 − 2𝑖 .

Hence the solutions to (4.8) are

𝑧1 = 3 + 𝑖 + 𝑆1
2 ⋅ 12

= 3 + 𝑖 + 𝑆1

= 3 + 𝑖 + 2 + 2𝑖 = 5 + 3𝑖 ,

and

𝑧2 = 3 + 𝑖 + 𝑆2
2 ⋅ 12

= 3 + 𝑖 + 𝑆2

= 3 + 𝑖 − 2 − 2𝑖 = 1 − 𝑖 .

In particular, the given polynomial factorizes as

1
2𝑧

2 − (3 + 𝑖)𝑧 + (4 − 𝑖) = 1
2(𝑧 − 𝑧1)(𝑧 − 𝑧2)

= 1
2(𝑧 − 5 − 3𝑖)(𝑧 − 1 + 𝑖) .

Example 4.44

Question. Consider the equation

𝑧3 − 7𝑧2 + 6𝑧 = 0 .

1. Check whether 𝑧 = 0, 1, −1 are solutions.
2. Using your answer from Point 1, and polynomial di-

vision, find all the solutions.

Solution.

1. By direct inspection we see that 𝑧 = 0 and 𝑧 = 1 are
solutions.
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2. Since 𝑧 = 0 is a solution, we can factorize

𝑧3 − 7𝑧2 + 6𝑧 = 𝑧 (𝑧2 − 7𝑧 + 6) .

We could now use the quadratic formula on the term
𝑧2−7𝑧+6 to find the remaining two roots. However,
we have already observed that 𝑧 = 1 is a solution.
Therefore 𝑧 −1 divides 𝑧2−7𝑧 +6. Using polynomial
long division, we find that

𝑧2 − 7𝑧 + 6
𝑧 − 1 = 𝑧 − 6 .

Therefore the last solution is 𝑧 = 6, and

𝑧3 − 7𝑧2 + 6𝑧 = 𝑧(𝑧 − 1)(𝑧 − 6) .Example 4.45

Question. Find all the complex solutions to

𝑧3 − 7𝑧 + 6 = 0 .

Solution. It is easy to see 𝑧 = 1 is a solution. This means
that 𝑧 − 1 divides 𝑧3 − 7𝑧 + 6. By using polynomial long
division, we compute that

𝑧3 − 7𝑧 + 6
𝑧 − 1 = 𝑧2 + 𝑧 − 6 .

We are now left to solve

𝑧2 + 𝑧 − 6 = 0 .

Using the quadratic formula, we see that the above is
solved by 𝑧 = 2 and 𝑧 = −3. Therefore the given poly-
nomial factorizes as

𝑧3 − 7𝑧 + 6 = (𝑧 − 1)(𝑧 − 2)(𝑧 + 3) .

4.4 Roots

Theorem 4.46

Let 𝑛 ∈ ℕ and consider the equation

𝑧𝑛 = 1 . (4.10)

All the 𝑛 solutions to (4.10) are given by

𝑧𝑘 = exp (𝑖2𝜋𝑘𝑛 ) , 𝑘 = 0, … , 𝑛 − 1 ,

where exp(𝑥) denotes 𝑒𝑥 .

Definition 4.47

The 𝑛 solutions to
𝑧𝑛 = 1

are called the roots of unity.

Example 4.48

Question. Find all the solutions to

𝑧4 = 1 .

Solution. The 4 solutions are given by

𝑧𝑘 = exp (𝑖2𝜋𝑘4 ) = exp (𝑖𝜋𝑘2 ) ,

for 𝑘 = 0, 1, 2, 3. We compute:

𝑧0 = 𝑒𝑖0 = 1 , 𝑧1 = 𝑒𝑖 𝜋2 = 𝑖 ,
𝑧2 = 𝑒𝑖𝜋 = −1 , 𝑧3 = 𝑒𝑖 3𝜋2 = −𝑖 .

Note that for 𝑘 = 4 we would again get the solution 𝑧 =
𝑒𝑖2𝜋 = 1.

Example 4.49

Question. Find all the solutions to

𝑧3 = 1 .
Solution. The 3 solutions are given by

𝑧𝑘 = exp (𝑖2𝜋𝑘3 ) ,

for 𝑘 = 0, 1, 2. We compute:

𝑧0 = 𝑒𝑖0 = 1, 𝑧1 = 𝑒𝑖
2𝜋
3 , 𝑧2 = 𝑒𝑖

4𝜋
3 .

We can write 𝑧1 and 𝑧2 in cartesian form:

𝑧1 = 𝑒𝑖
2𝜋
3 = cos (2𝜋3 ) + 𝑖 sin (2𝜋3 ) = −1

2 + √3
2 𝑖
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and

𝑧2 = 𝑒𝑖
4𝜋
3 = cos (4𝜋3 ) + 𝑖 sin (4𝜋3 ) = −1

2 − √3
2 𝑖 .

Theorem 4.50

Let 𝑛 ∈ ℕ, 𝑐 ∈ ℂ and consider the equation

𝑧𝑛 = 𝑐 . (4.11)

All the 𝑛 solutions to (4.11) are given by

𝑧𝑘 = 𝑛√|𝑐| exp (𝑖 𝜃 + 2𝜋𝑘
𝑛 ) , 𝑘 = 0, … , 𝑛 − 1 ,

where 𝑛√|𝑐| is the 𝑛-th root of the real number |𝑐|, and 𝜃 =
arg(𝑐).

Example 4.51

Question. Find all the 𝑧 ∈ ℂ such that

𝑧5 = −32 .

Solution. Let 𝑐 = −32. We have

|𝑐| = | − 32| = 32 = 25 , 𝜃 = arg(−32) = 𝜋 .

The 5 solutions are given by

𝑧𝑘 = (25)
1
5 exp (𝑖𝜋 1 + 2𝑘

5 ) , 𝑘 ∈ ℤ ,

for 𝑘 = 0, 1, 2, 3, 4. We get

𝑧0 = 2𝑒𝑖
𝜋
5 𝑧1 = 2𝑒𝑖

3𝜋
5

𝑧2 = 2𝑒𝑖𝜋 = −2 𝑧3 = 2𝑒𝑖
7𝜋
5

𝑧4 = 2𝑒𝑖
9𝜋
5

Example 4.52

Question. Find all the 𝑧 ∈ ℂ such that

𝑧4 = 9 (cos (𝜋3 ) + 𝑖 sin (𝜋3 )) .
Solution. Set

𝑐 ∶= 9 (cos (𝜋3 ) + 𝑖 sin (𝜋3 )) .
The complex number 𝑐 is already in the trigonometric
form, so that we can immediately obtain

|𝑐| = 9 , 𝜃 = arg(𝑐) = 𝜋
3 .

The 4 solutions are given by

𝑧𝑘 = 4√9 exp (𝑖 𝜋/3 + 2𝜋𝑘
4 )

= √3 exp (𝑖𝜋 1 + 6𝑘
12 )

for 𝑘 = 0, 1, 2, 3. We compute

𝑧0 = √3𝑒𝑖𝜋
1
12 𝑧1 = √3𝑒𝑖𝜋

7
12

𝑧2 = √3𝑒𝑖𝜋
13
12 𝑧3 = √3𝑒𝑖𝜋

19
12
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5 Sequences in ℝ
Definition 5.1: Convergent sequence

The real sequence (𝑎𝑛) converges to 𝑎, or equivalently
has limit 𝑎, denoted by

lim𝑛→∞ 𝑎𝑛 = 𝑎 ,

if for all 𝜀 ∈ ℝ, 𝜀 > 0, there exists 𝑁 ∈ ℕ such that for all
𝑛 ∈ ℕ, 𝑛 ≥ 𝑁 it holds that

|𝑎𝑛 − 𝑎| < 𝜀 .

Using quantifiers, we can write this as

∀ 𝜀 > 0, ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑎𝑛 − 𝑎| < 𝜀 .

The sequence (𝑎𝑛)𝑛∈ℕ is convergent if it admits limit.

Theorem 5.2

Let 𝑝 > 0. Then
lim𝑛→∞

1
𝑛𝑝 = 0 .

Proof

Let 𝑝 > 0. We have to show that

∀𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , | 1𝑛𝑝 − 0| < 𝜀 .

Let 𝜀 > 0. Choose 𝑁 ∈ ℕ such that

𝑁 > 1
𝜀1/𝑝 . (5.1)

Let 𝑛 ≥ 𝑁 . Since 𝑝 > 0, we have 𝑛𝑝 ≥ 𝑁 𝑝 , which implies

1
𝑛𝑝 ≤ 1

𝑁 𝑝 .

By (5.1) we deduce
1
𝑁 𝑝 < 𝜀 .

Then
| 1𝑛𝑝 − 0| = 1

𝑛𝑝 ≤ 1
𝑁 𝑝 < 𝜀 .

Example 5.3

Question. Using the definition of convergence, prove
that

lim𝑛→∞
𝑛

2𝑛 + 3 = 1
2 .

Solution.

1. Rough Work: Let 𝜀 > 0. We want to find 𝑁 ∈ ℕ such
that

| 𝑛
2𝑛 + 3 − 1

2 | < 𝜀 , ∀ 𝑛 ≥ 𝑁 .
To this end, we compute:

| 𝑛
2𝑛 + 3 − 1

2 | = |2𝑛 − (2𝑛 + 3)
2(2𝑛 + 3) |

= | −3
4𝑛 + 6 |

= 3
4𝑛 + 6 .

Therefore

| 𝑛
2𝑛 + 3 − 1

2 | < 𝜀 ⟺ 3
4𝑛 + 6 < 𝜀

⟺ 4𝑛 + 6
3 > 1

𝜀
⟺ 4𝑛 + 6 > 3

𝜀
⟺ 4𝑛 > 3

𝜀 − 6

⟺ 𝑛 > 3
4𝜀 −

6
4 .

Looking at the above equivalences, it is clear that
𝑁 ∈ ℕ has to be chosen so that

𝑁 > 3
4𝜀 −

6
4 .

2. Formal Proof: We have to show that

∀𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , | 𝑛
2𝑛 + 3 − 1

2 | < 𝜀 .

Let 𝜀 > 0. Choose 𝑁 ∈ ℕ such that

𝑁 > 3
4𝜀 −

6
4 . (5.2)

By the rough work shown above, inequality (5.2) is
equivalent to

3
4𝑁 + 6 < 𝜀 .
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Let 𝑛 ≥ 𝑁 . Then

| 𝑛
2𝑛 + 3 − 1

2 | =
3

4𝑛 + 6
≤ 3

4𝑁 + 6
< 𝜀 ,

where in the third line we used that 𝑛 ≥ 𝑁 .

Definition 5.4: Divergent sequence

We say that a sequence (𝑎𝑛)𝑛∈ℕ in ℝ is divergent if it is
not convergent.

Theorem 5.5

Let (𝑎𝑛) be the sequence defined by

𝑎𝑛 = (−1)𝑛 .

Then (𝑎𝑛) does not converge.

Proof

Suppose by contradiction that 𝑎𝑛 → 𝑎 for some 𝑎 ∈ ℝ. Let

𝜀 ∶= 1
2 .

Since 𝑎𝑛 → 𝑎, there exists 𝑁 ∈ ℕ such that

|𝑎𝑛 − 𝑎| < 𝜀 = 1
3 ∀ 𝑛 ≥ 𝑁 .

If we take 𝑛 = 2𝑁 , then 𝑛 ≥ 𝑁 and

|𝑎2𝑁 − 𝑎| = |1 − 𝑎| < 1
2 .

If we take 𝑛 = 2𝑁 + 1, then 𝑛 ≥ 𝑁 and

|𝑎2𝑁+1 − 𝑎| = | − 1 − 𝑎| < 1
2 .

Therefore

2 = |(1 − 𝑎) − (−1 − 𝑎)|
≤ |1 − 𝑎| + | − 1 − 𝑎|
< 1

2 + 1
2 = 1 ,

which is a contradiction. Hence (𝑎𝑛) is divergent.

Theorem 5.6: Uniqueness of limit

Let (𝑎𝑛)𝑛∈ℕ be a sequence. Suppose that

lim𝑛→∞ 𝑎𝑛 = 𝑎 , lim𝑛→∞ 𝑎𝑛 = 𝑏 .

Then 𝑎 = 𝑏.

Definition 5.7: Bounded sequence

A sequence (𝑎𝑛)𝑛∈ℕ is called bounded if there exists a
constant 𝑀 ∈ ℝ, with 𝑀 > 0, such that

|𝑎𝑛 | ≤ 𝑀 , ∀ 𝑛 ∈ ℕ .

Theorem 5.8

Every convergent sequence is bounded.

Example 5.9

The sequence
𝑎𝑛 = (−1)𝑛

is bounded but not convergent.

Corollary 5.10

If a sequence is not bounded, then the sequence does not
converge.

Remark 5.11

For a sequence (𝑎𝑛) to be unbounded, it means that

∀𝑀 > 0 , ∃ 𝑛 ∈ ℕ s.t. |𝑎𝑛 | > 𝑀 .

Theorem 5.12

For all 𝑝 > 0, the sequence

𝑎𝑛 = 𝑛𝑝

does not converge.

Theorem 5.13

The sequence
𝑎𝑛 = log 𝑛

does not converge.
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Theorem 5.14: Algebra of limits

Let (𝑎𝑛)𝑛∈ℕ and (𝑏𝑛)𝑛∈ℕ be sequences in ℝ. Suppose that

lim𝑛→∞ 𝑎𝑛 = 𝑎 , lim𝑛→∞ 𝑏𝑛 = 𝑏 ,

for some 𝑎, 𝑏 ∈ ℝ. Then,

1. Limit of sum is the sum of limits:

lim𝑛→∞ (𝑎𝑛 ± 𝑏𝑛) = 𝑎 ± 𝑏

2. Limit of product is the product of limits:

lim𝑛→∞ (𝑎𝑛𝑏𝑛) = 𝑎𝑏

3. If 𝑏𝑛 ≠ 0 for all 𝑛 ∈ ℕ and 𝑏 ≠ 0, then

lim𝑛→∞ (𝑎𝑛𝑏𝑛
) = 𝑎

𝑏

Example 5.15

Question. Prove that

lim𝑛→∞
3𝑛

7𝑛 + 4 = 3
7 .

Solution. We can rewrite

3𝑛
7𝑛 + 4 = 3

7 + 4
𝑛

From Theorem 5.2, we know that

1
𝑛 → 0 .

Hence, it follows from Theorem 5.14 Point 2 that

4
𝑛 = 4 ⋅ 1𝑛 → 4 ⋅ 0 = 0 .

By Theorem 5.14 Point 1 we have

7 + 4
𝑛 → 7 + 0 = 7 .

Finally we can use Theorem 5.14 Point 3 to infer

3𝑛
7𝑛 + 4 = 3

7 + 4
𝑛
→ 3

7 .

Example 5.16

Question. Prove that

lim𝑛→∞
𝑛2 − 1
2𝑛2 − 3 = 1

2 .

Solution. Factor 𝑛2 to obtain

𝑛2 − 1
2𝑛2 − 3 =

1 − 1
𝑛2

2 − 3
𝑛2

.

By Theorem 5.2 we have

1
𝑛2 → 0 .

We can then use the Algebra of Limits Theorem 5.14 Point
2 to infer 3

𝑛2 → 3 ⋅ 0 = 0
and Theorem 5.14 Point 1 to get

1 − 1
𝑛2 → 1 − 0 = 1 , 2 − 3

𝑛2 → 2 − 0 = 2 .

Finally we use Theorem 5.14 Point 3 and conclude

1 − 1
𝑛2

2 − 3
𝑛2

→ 1
2 .

Therefore

lim𝑛→∞
𝑛2 − 1
2𝑛2 − 3 = lim𝑛→∞

1 − 1
𝑛2

2 − 3
𝑛2

= 1
2 .

Example 5.17

Question. Prove that the sequence

𝑎𝑛 = 4𝑛3 + 8𝑛 + 1
7𝑛2 + 2𝑛 + 1

does not converge.
Solution. To show that the sequence (𝑎𝑛) does not con-
verge, we divide by the largest power in the denominator,
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which in this case is 𝑛2

𝑎𝑛 = 4𝑛3 + 8𝑛 + 1
7𝑛2 + 2𝑛 + 1

=
4𝑛 + 8

𝑛 + 1
𝑛2

7 + 2
𝑛 + 1

𝑛2
= 𝑏𝑛

𝑐𝑛
where we set

𝑏𝑛 ∶= 4𝑛 + 8
𝑛 + 1

𝑛2 , 𝑐𝑛 ∶= 7 + 2
𝑛 + 1

𝑛2 .

Using the Algebra of Limits Theorem 5.14 we see that

𝑐𝑛 = 7 + 2
𝑛 + 1

𝑛2 → 7 .

Suppose by contradiction that

𝑎𝑛 → 𝑎

for some 𝑎 ∈ ℝ. Then, by the Algebra of Limits, we would
infer

𝑏𝑛 = 𝑐𝑛 ⋅ 𝑎𝑛 → 7𝑎 ,
concluding that 𝑏𝑛 is convergent to 7𝑎. We have that

𝑏𝑛 = 4𝑛 + 𝑑𝑛 , 𝑑𝑛 ∶= 8
𝑛 + 1

𝑛2 .

Again by the Algebra of Limits Theorem 5.14 we get that

𝑑𝑛 = 8
𝑛 + 1

𝑛2 → 0 ,

and hence

4𝑛 = 𝑏𝑛 − 𝑑𝑛 → 7𝑎 − 0 = 7𝑎 .

This is a contradiction, since the sequence (4𝑛) is un-
bounded, and hence cannot be convergent. Hence (𝑎𝑛)
is not convergent.

Example 5.18

Question. Define the sequence

𝑎𝑛 ∶= 2𝑛3 + 7𝑛 + 1
5𝑛 + 9 ⋅ 8𝑛 + 9

6𝑛3 + 8𝑛2 + 3 .
Prove that

lim𝑛→∞ 𝑎𝑛 = 8
15 .

Solution. The first fraction in (𝑎𝑛) does not converge,
as it is unbounded. Therefore we cannot use Point 2 in

Theorem 5.14 directly. However, we note that

𝑎𝑛 = 2𝑛3 + 7𝑛 + 1
5𝑛 + 9 ⋅ 8𝑛 + 9

6𝑛3 + 8𝑛2 + 3
= 8𝑛 + 9

5𝑛 + 9 ⋅ 2𝑛
3 + 7𝑛 + 1

6𝑛3 + 8𝑛2 + 3 .

Factoring out 𝑛 and 𝑛3, respectively, and using the Alge-
bra of Limits, we see that

8𝑛 + 9
5𝑛 + 9 = 8 + 9/𝑛

5 + 9/𝑛 → 8 + 0
5 + 0 = 8

5
and

2 + 7/𝑛2 + 1/𝑛3
6 + 8/𝑛 + 3/𝑛3 → 2 + 0 + 0

6 + 0 + 0 = 1
3

Therefore Theorem 5.14 Point 2 ensures that

𝑎𝑛 → 8
5 ⋅ 13 = 8

15 .

Example 5.19

Question. Prove that

𝑎𝑛 = 𝑛7/3 + 2√𝑛 + 7
4𝑛3/2 + 5𝑛

does not converge.
Solution. The largest power of 𝑛 in the denominator is
𝑛3/2. Hence we factor out 𝑛3/2

𝑎𝑛 = 𝑛7/3 + 2√𝑛 + 7
4𝑛3/2 + 5𝑛

= 𝑛7/3−3/2 + 2𝑛1/2−3/2 + 7𝑛−3/2
4 + 5𝑛−3/2

= 𝑛5/6 + 2𝑛−1 + 7𝑛−3/2
4 + 5𝑛−3/2

= 𝑏𝑛
𝑐𝑛

where we set

𝑏𝑛 ∶= 𝑛5/6 + 2𝑛−1 + 7𝑛−3/2 , 𝑐𝑛 ∶= 4 + 5𝑛−3/2 .

We see that 𝑏𝑛 is unbounded while 𝑐𝑛 → 4. By the Algebra
of Limits (and usual contradiction argument) we conclude
that (𝑎𝑛) is divergent.
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Theorem 5.20

Let (𝑎𝑛)𝑛∈ℕ be a sequence in ℝ such that

lim𝑛→∞ 𝑎𝑛 = 𝑎 ,

for some 𝑎 ∈ ℝ. If 𝑎𝑛 ≥ 0 for all 𝑛 ∈ ℕ and 𝑎 ≥ 0, then

lim𝑛→∞√𝑎𝑛 = √𝑎 .

Example 5.21

Question. Define the sequence

𝑎𝑛 = √9𝑛2 + 3𝑛 + 1 − 3𝑛 .
Prove that

lim𝑛→∞ 𝑎𝑛 = 1
2 .

Solution. We first rewrite

𝑎𝑛 = √9𝑛2 + 3𝑛 + 1 − 3𝑛

=
(√9𝑛2 + 3𝑛 + 1 − 3𝑛) (√9𝑛2 + 3𝑛 + 1 + 3𝑛)

√9𝑛2 + 3𝑛 + 1 + 3𝑛
= 9𝑛2 + 3𝑛 + 1 − (3𝑛)2

√9𝑛2 + 3𝑛 + 1 + 3𝑛
= 3𝑛 + 1

√9𝑛2 + 3𝑛 + 1 + 3𝑛
.

The biggest power of 𝑛 in the denominator is 𝑛. Therefore
we factor out 𝑛:

𝑎𝑛 = √9𝑛2 + 3𝑛 + 1 − 3𝑛
= 3𝑛 + 1

√9𝑛2 + 3𝑛 + 1 + 3𝑛

=
3 + 1

𝑛

√9 + 3
𝑛 + 1

𝑛2 + 3
.

By the Algebra of Limits we have

9 + 3
𝑛 + 1

𝑛2 → 9 + 0 + 0 = 9 .

Therefore we can use Theorem 5.20 to infer

√
9 + 3

𝑛 + 1
𝑛2 → √9 .

By the Algebra of Limits we conclude:

𝑎𝑛 =
3 + 1

𝑛

√9 + 3
𝑛 + 1

𝑛2 + 3
→ 3 + 0

√9 + 3 = 1
2 .

Example 5.22

Question. Prove that the sequence

𝑎𝑛 = √9𝑛2 + 3𝑛 + 1 − 2𝑛

does not converge.
Solution. We rewrite 𝑎𝑛 as

𝑎𝑛 = √9𝑛2 + 3𝑛 + 1 − 2𝑛

= (√9𝑛2 + 3𝑛 + 1 − 2𝑛)(√9𝑛2 + 3𝑛 + 1 + 2𝑛)
√9𝑛2 + 3𝑛 + 1 + 2𝑛

= 9𝑛2 + 3𝑛 + 1 − (2𝑛)2

√9𝑛2 + 3𝑛 + 1 + 2𝑛
= 5𝑛2 + 3𝑛 + 1

√9𝑛2 + 3𝑛 + 1 + 2𝑛

=
5𝑛 + 3 + 1

𝑛

√9 + 3
𝑛 + 1

𝑛2 + 2

= 𝑏𝑛
𝑐𝑛

,

where we factored 𝑛, being it the largest power of 𝑛 in the
denominator, and defined

𝑏𝑛 ∶= 5𝑛 + 3 + 1
𝑛 , 𝑐𝑛 ∶= √

9 + 3
𝑛 + 1

𝑛2 + 2 .

Note that
9 + 3

𝑛 + 1
𝑛2 → 9

by the Algebra of Limits. Therefore

√
9 + 3

𝑛 + 1
𝑛2 → √9 = 3

by Theorem 5.20. Hence

𝑐𝑛 = √
9 + 3

𝑛 + 1
𝑛2 + 2 → 3 + 2 = 5 .

The numerator
𝑏𝑛 = 5𝑛 + 3 + 1

𝑛
is instead unbounded. Therefore (𝑎𝑛) is not convergent,
by the Algebra of Limits and the usual contradiction ar-
gument.
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5.1 Limit Tests

Theorem 5.23: Squeeze theorem

Let (𝑎𝑛) , (𝑏𝑛) and (𝑐𝑛) be sequences in ℝ. Suppose that

𝑏𝑛 ≤ 𝑎𝑛 ≤ 𝑐𝑛 , ∀ 𝑛 ∈ ℕ ,

and that
lim𝑛→∞ 𝑏𝑛 = lim𝑛→∞ 𝑐𝑛 = 𝐿 .

Then
lim𝑛→∞ 𝑎𝑛 = 𝐿 .

Example 5.24

Question. Prove that

lim𝑛→∞
(−1)𝑛
𝑛 = 0 .

Solution. For all 𝑛 ∈ ℕ we can estimate

−1 ≤ (−1)𝑛 ≤ 1 .

Therefore

−1
𝑛 ≤ (−1)𝑛

𝑛 ≤ 1
𝑛 , ∀ 𝑛 ∈ ℕ .

Moreover

lim𝑛→∞
−1
𝑛 = −1 ⋅ 0 = 0 , lim𝑛→∞

1
𝑛 = 0 .

By the Squeeze Theorem 5.23 we conclude

lim𝑛→∞
(−1)𝑛
𝑛 = 0 .

Example 5.25

Question. Prove that

lim𝑛→∞
cos(3𝑛) + 9𝑛2

11𝑛2 + 15 sin(17𝑛) =
9
11 .

Solution. We know that

−1 ≤ cos(𝑥) ≤ 1 , −1 ≤ sin(𝑥) ≤ 1 , ∀ 𝑥 ∈ ℝ .
Therefore, for all 𝑛 ∈ ℕ

−1 ≤ cos(3𝑛) ≤ 1 , −1 ≤ sin(17𝑛) ≤ 1 .
We can use the above to estimate the numerator in the
given sequence:

−1 + 9𝑛2 ≤ cos(3𝑛) + 9𝑛2 ≤ 1 + 9𝑛2 . (5.3)

Concerning the denominator, we have

11𝑛2 − 15 ≤ 11𝑛2 + 15 sin(17𝑛) ≤ 11𝑛2 + 15

and therefore

1
11𝑛2 + 15 ≤ 1

11𝑛2 + 15 sin(17𝑛) ≤
1

11𝑛2 − 15 . (5.4)

Putting together (5.3)-(5.4) we obtain

−1 + 9𝑛2
11𝑛2 + 15 ≤ cos(3𝑛) + 9𝑛2

11𝑛2 + 15 sin(17𝑛) ≤
1 + 9𝑛2
11𝑛2 − 15 .

By the Algebra of Limits we infer

−1 + 9𝑛2
11𝑛2 + 15 =

− 1
𝑛2 + 9

11 + 15
𝑛2

→ 0 + 9
11 + 0 = 9

11

and

1 + 9𝑛2
11𝑛2 − 15 =

1
𝑛2 + 9

11 − 15
𝑛2

→ 0 + 9
11 + 0 = 9

11 .

Applying the Squeeze Theorem 5.23 we conclude

lim𝑛→∞
cos(3𝑛) + 9𝑛2

11𝑛2 + 15 sin(17𝑛) =
9
11 .

Theorem 5.26: Geometric Sequence Test

Let 𝑥 ∈ ℝ and let (𝑎𝑛) be the geometric sequence defined
by

𝑎𝑛 ∶= 𝑥𝑛 .
We have:

1. If |𝑥| < 1, then
lim𝑛→∞ 𝑎𝑛 = 0 .

2. If |𝑥 | > 1, then sequence (𝑎𝑛) is unbounded, and
hence divergent.

Example 5.27

We can apply Theorem 5.26 to prove convergence or di-
vergence for the following sequences.

1. We have

(12)
𝑛
⟶ 0

since
| 12 | =

1
2 < 1 .

33



2. We have

(−12 )
𝑛
⟶ 0

since
|−12 | = 1

2 < 1 .

3. The sequence

𝑎𝑛 = (−32 )
𝑛

does not converge, since

|−32 | = 3
2 > 1 .

4. As 𝑛 → ∞,

3𝑛
(−5)𝑛 = (−3

5)
𝑛
⟶ 0

since
|−3
5 | =

3
5 < 1 .

5. The sequence

𝑎𝑛 = (−7)𝑛
22𝑛

does not converge, since

(−7)𝑛
22𝑛 = (−7)𝑛

(22)𝑛
= (−7

4)
𝑛

and
|−7
4 | =

7
4 > 1 .

Theorem 5.28: Ratio Test

Let (𝑎𝑛) be a sequence in ℝ such that

𝑎𝑛 ≠ 0 , ∀ 𝑛 ∈ ℕ .

1. Suppose that the following limit exists:

𝐿 ∶= lim𝑛→∞ | 𝑎𝑛+1𝑎𝑛
| .

Then,

• If 𝐿 < 1 we have

lim𝑛→∞ 𝑎𝑛 = 0 .

• If 𝐿 > 1, the sequence (𝑎𝑛) is unbounded, and
hence does not converge.

2. Suppose that there exists 𝑁 ∈ ℕ and 𝐿 > 1 such that

| 𝑎𝑛+1𝑎𝑛
| ≥ 𝐿 , ∀ 𝑛 ≥ 𝑁 .

Then the sequence (𝑎𝑛) is unbounded, and hence
does not converge.

Example 5.29

Question. Let
𝑎𝑛 = 3𝑛

𝑛! ,
where we recall that 𝑛! (pronounced 𝑛 factorial) is defined
by

𝑛! ∶= 𝑛 ⋅ (𝑛 − 1) ⋅ (𝑛 − 2) ⋅ … ⋅ 3 ⋅ 2 ⋅ 1 .
Prove that

lim𝑛→∞ 𝑎𝑛 = 0 .
Solution. We have

| 𝑎𝑛+1𝑎𝑛
| =

( 3𝑛+1
(𝑛 + 1)!)

(3
𝑛
𝑛! )

= 3𝑛+1
3𝑛

𝑛!
(𝑛 + 1)!

= 3 ⋅ 3𝑛
3𝑛

𝑛!
(𝑛 + 1)𝑛!

= 3
𝑛 + 1 ⟶ 𝐿 = 0 .

Hence, 𝐿 = 0 < 1 so 𝑎𝑛 → 0 by the Ratio Test in Theorem
5.28.

Example 5.30

Question. Consider the sequence

𝑎𝑛 = 𝑛! ⋅ 3𝑛
√(2𝑛)!

.

Prove that (𝑎𝑛) is divergent.
Solution. We have

| 𝑎𝑛+1𝑎𝑛
| = (𝑛 + 1)! ⋅ 3𝑛+1

√(2(𝑛 + 1))!
√(2𝑛)!
𝑛! ⋅ 3𝑛

= (𝑛 + 1)!
𝑛! ⋅ 3

𝑛+1
3𝑛 ⋅ √(2𝑛)!

√(2(𝑛 + 1))!
For the first two fractions we have

(𝑛 + 1)!
𝑛! ⋅ 3

𝑛+1
3𝑛 = 3(𝑛 + 1) ,
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while for the third fraction

√(2𝑛)!
√(2(𝑛 + 1))!

=
√

(2𝑛)!
(2𝑛 + 2)!

=
√

(2𝑛)!
(2𝑛 + 2) ⋅ (2𝑛 + 1) ⋅ (2𝑛)!

= 1
√(2𝑛 + 1)(2𝑛 + 2)

.

Therefore, using the Algebra of Limits,

| 𝑎𝑛+1𝑎𝑛
| = 3(𝑛 + 1)

√(2𝑛 + 1)(2𝑛 + 2)

=
3𝑛 (1 + 1

𝑛)

√𝑛2 (2 + 1
𝑛) (2 +

2
𝑛)

=
3 (1 + 1

𝑛)

√(2 + 1
𝑛) (2 +

2
𝑛)

⟶ 3
√4

= 3
2 > 1 .

By the Ratio Test we conclude that (𝑎𝑛) is divergent.

Example 5.31

Question. Prove that the following sequence is divergent

𝑎𝑛 = 𝑛!
100𝑛 .

Solution. We have

| 𝑎𝑛+1𝑎𝑛
| = 100𝑛

100𝑛+1
(𝑛 + 1)!

𝑛! = 𝑛 + 1
100 .

Choose 𝑁 = 101. Then for all 𝑛 ≥ 𝑁 ,

| 𝑎𝑛+1𝑎𝑛
| = 𝑛 + 1

100
≥ 𝑁 + 1

100
= 101

100 > 1 .

Hence 𝑎𝑛 is divergent by the Ratio Test.

5.2 Monotone sequences

Definition 5.32: Monotone sequence

Let (𝑎𝑛) be a real sequence. We say that:

1. (𝑎𝑛) is increasing if

𝑎𝑛 ≤ 𝑎𝑛+1 , ∀ 𝑛 ≥ 𝑁 .

2. (𝑎𝑛) is decreasing if

𝑎𝑛 ≥ 𝑎𝑛+1 , ∀ 𝑛 ≥ 𝑁 .

3. (𝑎𝑛) ismonotone if it is either increasing or decreas-
ing.

Example 5.33

Question. Prove that the following sequence is increas-
ing

𝑎𝑛 = 𝑛 − 1
𝑛 .

Solution. We have

𝑎𝑛+1 = 𝑛
𝑛 + 1 > 𝑛 − 1

𝑛 = 𝑎𝑛 ,

where the inequality holds because

𝑛
𝑛 + 1 > 𝑛 − 1

𝑛 ⟺ 𝑛2 > (𝑛 − 1)(𝑛 + 1)
⟺ 𝑛2 > 𝑛2 − 1
⟺ 0 > −1

Example 5.34

Question. Prove that the following sequence is decreas-
ing

𝑎𝑛 = 1
𝑛 .

Solution. We have

𝑎𝑛 = 1
𝑛 > 1

𝑛 + 1 = 𝑎𝑛+1 ,

concluding.

Theorem 5.35: Monotone Convergence Theorem

Let (𝑎𝑛) be a sequence in ℝ. Suppose that (𝑎𝑛) is bounded
and monotone. Then (𝑎𝑛) converges.
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Proof

Assume (𝑎𝑛) is bounded and monotone. Since (𝑎𝑛) is
bounded, the set

𝐴 ∶= {𝑎𝑛 ∶ 𝑛 ∈ ℕ} ⊆ ℝ

is bounded below and above. By the Axiom of Complete-
ness of ℝ there exist 𝑖, 𝑠 ∈ ℝ such that

𝑖 = inf𝐴 , 𝑠 = sup𝐴 .

We have two cases:

1. (𝑎𝑛) is increasing: We are going to prove that

lim𝑛→∞ 𝑎𝑛 = 𝑠 .

Equivalently, we need to prove that

∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑎𝑛 − 𝑠| < 𝜀 . (5.5)

Let 𝜀 > 0. Since 𝑠 is the smallest upper bound for 𝐴,
this means

𝑠 − 𝜀
is not an upper bound. Therefore there exists 𝑁 ∈ ℕ
such that

𝑠 − 𝜀 < 𝑎𝑁 . (5.6)

Let 𝑛 ≥ 𝑁 . Since 𝑎𝑛 is increasing, we have

𝑎𝑁 ≤ 𝑎𝑛 , ∀ 𝑛 ≥ 𝑁 . (5.7)

Moreover 𝑠 is the supremum of 𝐴, so that

𝑎𝑛 ≤ 𝑠 < 𝑠 + 𝜀 , ∀ 𝑛 ∈ ℕ . (5.8)

Putting together estimates (5.6)-(5.7)-(5.8) we get

𝑠 − 𝜀 < 𝑎𝑁 ≤ 𝑎𝑛 ≤ 𝑠 < 𝑠 + 𝜀 , ∀ 𝑛 ≥ 𝑁 .

The above implies

𝑠 − 𝜀 < 𝑎𝑛 < 𝑠 + 𝜀 , ∀ 𝑛 ≥ 𝑁 ,

which is equivalent to (5.5).

2. (𝑎𝑛) is decreasing: With a similar proof, one can
show that

lim𝑛→∞ 𝑎𝑛 = 𝑖 .
This is left as an exercise.

5.3 Example: Euler’s Number

As an application of the Monotone Convergence Theorem we
can give a formal definition for the Euler’s Number

𝑒 = 2.71828182845904523536…

Theorem 5.36

Consider the sequence

𝑎𝑛 = (1 + 1
𝑛)

𝑛
.

We have that:

1. (𝑎𝑛) is monotone increasing,
2. (𝑎𝑛) is bounded.

In particular (𝑎𝑛) is convergent.

Proof

Part 1. We prove that (𝑎𝑛) is increasing
𝑎𝑛 ≥ 𝑎𝑛−1 , ∀ 𝑛 ∈ ℕ ,

which by definition is equivalent to

(1 + 1
𝑛)

𝑛
≥ (1 + 1

𝑛 − 1)
𝑛−1

, ∀ 𝑛 ∈ ℕ .

Summing the fractions we get

(𝑛 + 1
𝑛 )

𝑛
≥ ( 𝑛

𝑛 − 1)
𝑛−1

.

Multiplying by ((𝑛 − 1)/𝑛)𝑛 we obtain

(𝑛 − 1
𝑛 )

𝑛
(𝑛 + 1

𝑛 )
𝑛
≥ 𝑛 − 1

𝑛 ,

which simplifies to

(1 − 1
𝑛2 )

𝑛
≥ 1 − 1

𝑛 , ∀ 𝑛 ∈ ℕ . (5.9)

Therefore (𝑎𝑛) is increasing if and only if (5.9) holds. Re-
call Bernoulli’s inequality from Lemma ??: For 𝑥 ∈ ℝ,
𝑥 > −1, it holds

(1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥 , ∀ 𝑛 ∈ ℕ .
Appliying Bernoulli’s inequality with

𝑥 = − 1
𝑛2

yields

(1 − 1
𝑛2 )

𝑛
≥ 1 + 𝑛 (− 1

𝑛2 ) = 1 − 1
𝑛 ,
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which is exactly (5.9). Then (𝑎𝑛) is increasing.
Part 2. We have to prove that (𝑎𝑛) is bounded, that is, that
there exists 𝑀 > 0 such that

|𝑎𝑛 | ≤ 𝑀 , ∀ 𝑛 ∈ ℕ .
To this end, introduce the sequence (𝑏𝑛) by setting

𝑏𝑛 ∶= (1 + 1
𝑛)

𝑛+1
.

The sequence (𝑏𝑛) is decreasing.
To prove (𝑏𝑛) is decreasing, we need to show
that

𝑏𝑛−1 ≥ 𝑏𝑛 , ∀ 𝑛 ∈ ℕ .
By definition of 𝑏𝑛, the above reads

(1 + 1
𝑛 − 1)

𝑛
≥ (1 + 1

𝑛)
𝑛+1

, ∀ 𝑛 ∈ ℕ .

Summing the terms inside the brackets, the
above is equivalent to

( 𝑛
𝑛 − 1)

𝑛
≥ (𝑛 + 1

𝑛 )
𝑛
(𝑛 + 1

𝑛 ) .

Multiplying by (𝑛/(𝑛 + 1))𝑛 we get

( 𝑛2
𝑛2 − 1)

𝑛
≥ (𝑛 + 1

𝑛 ) .

The above is equivalent to

(1 + 1
𝑛2 − 1)

𝑛
≥ (1 + 1

𝑛) . (5.10)

Therefore (𝑏𝑛) is decreasing if and only if (5.10)
holds for all 𝑛 ∈ ℕ. By choosing

𝑥 = 1
𝑛2 − 1

in Bernoulli’s inequality, we obtain

(1 + 1
𝑛2 − 1)

𝑛
≥ 1 + 𝑛 ( 1

𝑛2 − 1)
= 1 + 𝑛

𝑛2 − 1
≥ 1 + 1

𝑛 ,

where in the last inequality we used that

𝑛
𝑛2 − 1 > 1

𝑛 ,

which holds, being equivalent to 𝑛2 > 𝑛2 − 1.
We have therefore proven (5.10), and hence (𝑏𝑛)
is decreasing.

We now observe that For all 𝑛 ∈ ℕ

𝑏𝑛 = (1 + 1
𝑛)

𝑛+1

= (1 + 1
𝑛)

𝑛
(1 + 1

𝑛)

= 𝑎𝑛 (1 + 1
𝑛)

> 𝑎𝑛 .

Since (𝑎𝑛) is increasing and (𝑏𝑛) is decreasing, in particu-
lar

𝑎𝑛 ≥ 𝑎1 , 𝑏𝑛 ≤ 𝑏1 .
Therefore

𝑎1 ≤ 𝑎𝑛 < 𝑏𝑛 ≤ 𝑏1 , ∀ 𝑛 ∈ ℕ .

We compute
𝑎1 = 2 , 𝑏1 = 4 ,

from which we get

2 ≤ 𝑎𝑛 ≤ 4 , ∀ 𝑛 ∈ ℕ .

Therefore
|𝑎𝑛 | ≤ 4 , ∀ 𝑛 ∈ ℕ ,

showing that (𝑎𝑛) is bounded.
Part 3. The sequence (𝑎𝑛) is increasing and bounded
above. Therefore (𝑎𝑛) is convergent by the Monotone
Convergence Theorem 5.35.

Thanks to Theorem 5.36 we can define the Euler’s Number 𝑒.

Definition 5.37: Euler’s Number

The Euler’s number is defined as

𝑒 ∶= lim𝑛→∞ (1 + 1
𝑛)

𝑛
.

Setting 𝑛 = 1000 in the formula for (𝑎𝑛), we get an approxima-
tion of 𝑒:

𝑒 ≈ 𝑎1000 = 2.7169 .

5.4 Some important limits

In this section we investigate limits of some sequences to
which the Limit Tests do not apply.
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Theorem 5.38

Let 𝑥 ∈ ℝ, with 𝑥 > 0. Then

lim𝑛→∞
𝑛√𝑥 = 1 .

Proof

Step 1. Assume 𝑥 ≥ 1. In this case

𝑛√𝑥 ≥ 1 .

Define
𝑏𝑛 ∶= 𝑛√𝑥 − 1 ,

so that 𝑏𝑛 ≥ 0. By Bernoulli’s Inequality we have

𝑥 = (1 + 𝑏𝑛)𝑛 ≥ 1 + 𝑛𝑏𝑛 .

Therefore
0 ≤ 𝑏𝑛 ≤ 𝑥 − 1

𝑛 .
Since 𝑥 − 1

𝑛 ⟶ 0 ,
by the Squeeze Theorem we infer 𝑏𝑛 → 0, and hence

𝑛√𝑥 = 1 + 𝑏𝑛 ⟶ 1+ 0 = 1 ,

by the Algebra of Limits.
Step 2. Assume 0 < 𝑥 < 1. In this case

1
𝑥 > 1 .

Therefore
lim𝑛→∞

𝑛√1/𝑥 = 1 .
by Step 1. Therefore

𝑛√𝑥 = 1
𝑛√1/𝑥

⟶ 1
1 = 1 ,

by the Algebra of Limits.

Theorem 5.39

Let (𝑎𝑛) be a sequence such that 𝑎𝑛 → 0. Then

sin(𝑎𝑛) → 0 , cos(𝑎𝑛) → 1 .

Proof

Assume that 𝑎𝑛 → 0 and set

𝜀 ∶= 𝜋
2 .

By the convergence 𝑎𝑚 → 0 there exists 𝑁 ∈ ℕ such that

|𝑎𝑛 | < 𝜀 = 𝜋
2 ∀ 𝑛 ≥ 𝑁 . (5.11)

Step 1. We prove that

sin(𝑎𝑛) → 0 .

By elementary trigonometry we have

0 ≤ | sin(𝑥)| = sin |𝑥| ≤ |𝑥| , ∀ 𝑥 ∈ [−𝜋
2 ,

𝜋
2 ] .

Therefore, since (5.11) holds, we can substitute 𝑥 = 𝑎𝑛 in
the above inequality to get

0 ≤ | sin(𝑎𝑛)| ≤ |𝑎𝑛 | , ∀ 𝑛 ≥ ℕ .

Since 𝑎𝑛 → 0, we also have |𝑎𝑛 | → 0. Therefore
| sin(𝑎𝑛)| → 0 by the Squeeze Theorem. This immediately
implies sin(𝑎𝑛) → 0.
Step 2. We prove that

cos(𝑎𝑛) → 1 .

Inverting the relation

cos2(𝑥) + sin2(𝑥) = 1 ,

we obtain
cos(𝑥) = ±√1 − sin2(𝑥) .

We have that cos(𝑥) ≥ 0 for −𝜋/2 ≤ 𝑥 ≤ 𝜋/2. Thus

cos(𝑥) = √1 − sin2(𝑥) , ∀ 𝑥 ∈ [−𝜋
2 ,

𝜋
2 ] .

Since (5.11) holds, we can set 𝑥 = 𝑎𝑛 in the above inequal-
ity and obtain

cos(𝑎𝑛) = √1 − sin2(𝑎𝑛) , ∀ 𝑛 ≥ 𝑁 .

By Step 1 we know that sin(𝑎𝑛) → 0. Therefore, by the
Algebra of Limits,

1 − sin2(𝑎𝑛) ⟶ 1 − 0 ⋅ 0 = 1 .

Using Theorem 5.20 we have

cos(𝑎𝑛) = √1 − sin2(𝑎𝑛) ⟶ √1 = 1 ,

concluding the proof.
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Theorem 5.40

Suppose (𝑎𝑛) is such that 𝑎𝑛 → 0 and

𝑎𝑛 ≠ 0 , ∀ 𝑛 ∈ ℕ .

Then

lim𝑛→∞
sin(𝑎𝑛)
𝑎𝑛

= 1 .

Proof

The following elementary trigonometric inequality holds:

sin(𝑥) < 𝑥 < tan(𝑥) , ∀ 𝑥 ∈ [0, 𝜋2 ] .

Note that sin 𝑥 > 0 for 0 < 𝑥 < 𝜋/2. Therefore we can
divide the above inequality by sin(𝑥) and take the recip-
rocals to get

cos(𝑥) < sin(𝑥)
𝑥 < 1 , ∀ 𝑥 ∈ (0, 𝜋2 ] .

If −𝜋/2 < 𝑥 < 0, we can apply the above inequality to −𝑥
to obtain

cos(−𝑥) < sin(−𝑥)
−𝑥 < 1 .

Recalling that cos(−𝑥) = cos(𝑥) and sin(−𝑥) = − sin(𝑥),
we get

cos(𝑥) < sin(𝑥)
𝑥 < 1 , ∀ 𝑥 ∈ ( − 𝜋

2 , 0] .

Thus

cos(𝑥) < sin(𝑥)
𝑥 < 1 , ∀ 𝑥 ∈ [−𝜋

2 ,
𝜋
2 ] ∖ {0} . (5.12)

Let
𝜀 ∶= 𝜋

2 .
Since 𝑎𝑛 → 0, there exists 𝑁 ∈ ℕ such that

|𝑎𝑛 | < 𝜀 = 𝜋
2 , ∀ 𝑛 ≥ 𝑁 .

Since 𝑎𝑛 ≠ 0 by assumption, the above shows that

𝑎𝑛 ∈ [ − 𝜋
2 ,

𝜋
2 ] ∖ {0} , ∀ 𝑛 ≥ ℕ .

Therefore we can substitute 𝑥 = 𝑎𝑛 into (5.12) to get

cos(𝑎𝑛) <
sin(𝑎𝑛)
𝑎𝑛

< 1 , ∀ 𝑛 ≥ 𝑁 .

We have
cos(𝑎𝑛) → 1

by Theorem 5.39. By the Squeeze Theorem we conclude
that

lim𝑛→∞
sin(𝑎𝑛)
𝑎𝑛

= 1 .

Warning

Youmight be tempted to apply L’Hôpital’s rule (which we
did not cover in these Lecture Notes) to compute

lim𝑥→0
sin(𝑥)
𝑥 .

This would yield the correct limit

lim𝑥→0
sin(𝑥)
𝑥 = lim𝑥→0

(sin(𝑥))′
(𝑥)′ = lim𝑥→0 cos(𝑥) = 1 .

However this is a circular argument, since the derivative
of sin(𝑥) at 𝑥 = 0 is defined as the limit

lim𝑥→0
sin(𝑥)
𝑥 .

Theorem 5.41

Suppose (𝑎𝑛) is such that 𝑎𝑛 → 0 and

𝑎𝑛 ≠ 0 , ∀ 𝑛 ∈ ℕ .

Then

lim𝑛→∞
1 − cos(𝑎𝑛)

(𝑎𝑛)2
= 1

2 , lim𝑛→∞
1 − cos(𝑎𝑛)

𝑎𝑛
= 0 .

Proof

Step 1. By Theorem 5.39 and Theorem 5.40, we have

cos(𝑎𝑛) → 1 , sin(𝑎𝑛)
𝑎𝑛

→ 1 .

Therefore

1 − cos(𝑎𝑛)
(𝑎𝑛)2

= 1 − cos(𝑎𝑛)
(𝑎𝑛)2

1 + cos(𝑎𝑛)
1 + cos(𝑎𝑛)

= 1 − cos2(𝑎𝑛)
(𝑎𝑛)2

1
1 + cos(𝑎𝑛)

= (sin(𝑎𝑛)𝑎𝑛
)
2 1
1 + cos(𝑎𝑛)

⟶ 1 ⋅ 1
1 + 1 = 1

2 ,

where in the last line we use the Algebra of Limits.
Step 2. We have

1 − cos(𝑎𝑛)
𝑎𝑛

= 𝑎𝑛 ⋅
1 − cos(𝑎𝑛)

(𝑎𝑛)2
⟶ 0 ⋅ 12 = 0 ,

using Step 1 and the Algebra of Limits.
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Example 5.42

Question. Prove that

lim𝑛→∞ 𝑛 sin (1𝑛) = 1 . (5.13)

Solution. This is because

𝑛 sin (1𝑛) =
sin (1𝑛)

1
𝑛

⟶ 1 ,

by Theorem 5.40 with 𝑎𝑛 = 1/𝑛.

Example 5.43

Question. Prove that

lim𝑛→∞ 𝑛2 (1 − cos (1𝑛)) = 1
2 . (5.14)

Solution. Indeed,

𝑛2 (1 − cos (1𝑛)) =
1 − cos (1𝑛)

1
𝑛2

⟶ 1
2 ,

by applying Theorem 5.41 with 𝑎𝑛 = 1/𝑛.

Example 5.44

Question. Prove that

lim𝑛→∞

𝑛 (1 − cos (1𝑛))

sin (1𝑛)
= 1

2 .

Solution. Using (5.14)-(5.13) and the Algebra of Limits

𝑛 (1 − cos (1𝑛))

sin (1𝑛)
=

𝑛2 (1 − cos (1𝑛))

𝑛 sin (1𝑛)

⟶ 1/2
1 = 1

2 .

Example 5.45

Question. Prove that

lim𝑛→∞ 𝑛 cos (2𝑛) sin (
2
𝑛) = 2 .

Solution. We have

cos (2𝑛) ⟶ 1 ,

by Theorem 5.39 applied with 𝑎𝑛 = 2/𝑛. Moreover

sin (2𝑛)
2
𝑛

⟶ 1 ,

by Theorem 5.40 applied with 𝑎𝑛 = 2/𝑛. Therefore

𝑛 cos (2𝑛) sin (
2
𝑛) = 2 ⋅ cos (2𝑛) ⋅

sin (2𝑛)
2
𝑛

⟶ 2 ⋅ 1 ⋅ 1 = 2 ,

where we used the Algebra of Limits.

Example 5.46

Question. Prove that

lim𝑛→∞
𝑛2 + 1
𝑛 + 1 sin (1𝑛) = 1 .

Solution. Note that

𝑛2 + 1
𝑛 + 1 sin (1𝑛) =

⎛
⎜⎜
⎝

1 + 1
𝑛2

1 + 1
𝑛

⎞
⎟⎟
⎠
⋅ (𝑛 sin (1𝑛))

⟶ 1 + 0
1 + 0 ⋅ 1 = 1 ,

where we used (5.13) and the Algebra of Limits.
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