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Revision Guide
Revision Guide for the Exam of the module Differential Geometry
661955 2024/25 at the University of Hull. If you have any question or
find any typo, please email me at

S.Fanzon@hull.ac.uk

Full lenght Lecture Notes of the module available at

silviofanzon.com/2024-Differential-Geometry-Notes

Recommended revision strategy
Make sure you are very comfortable with:

1. The Definitions, Theorems, Proofs, and Examples contained in this
Revision Guide

2. The Homework questions
3. The 2022/23 and 2023/24 Exam Papers questions.
4. The Checklist below

Checklist
You should be comfortable with the following topics/taks:

Curves

• Regularity of curves
• Computing the length of a curve
• Computing arc-length function and arc-length reparametrization
• Calculating the curvature and torsion of unit-speed curves from the
definitions

• Calculating the curvature and torsion of (possibly not unit-speed)
curves from the formulae

• Calculating the Frenet frame of a unit-speed curve from the defini-
tions

• Calculating the Frenet frame of a (possibly not unit-speed) unit-
speed curve from the formulas

• Applying the Fundamental Theorem of Space Curves to determine
if two curves coincide, up to a ridig motion

• Proving that a curve is contained in a plane, and computing the
equation of such plane

• Proving that a curve is part of a circle

Topology:

• Proving that a given collection of sets is a topology
• Proving that a given set is open / closed
• Proving that a given topology is discrete
• Comparing two topologies, and determining which one is finer
• Studying convergent sequences in topological space
• Proving that a given set with a distance function is a metric space
• Studying the topology induced by the metric
• Studying convergent sequences in metric space
• Proving that a topological space is Hausdorff
• Proving that a given function between topological spaces is contin-
uous

• Studying the subspace topology of a given subset of a topological
space

• Showing that a given topological space is connected / path-
connected

• Proving that two given topological spaces are not homeomorphic,
by making use of connectedness arguments

Surfaces:

• Regularity of surface charts
• Computing reparametrizations of surface charts
• Calculating the standard unit normal of a surface chart
• Given a surface chart, compute a basis and the equation of the tan-
gent plane

• Calculating the differential of a smooth function between surfaces
• Proving that a given level surface is regular, and computing its tan-
gent plane

• Proving that a given surface is ruled
• Calculating the first fundamental form of a surface chart
• Proving that a given map is a local isometry / conformal
• Prove that a given parametrization is conformal
• Calculating length and angles of curves on surfaces
• Calculating the second fundamental form of a surface chart
• Calculating the matrix of the Weingarten map, the principal curva-
tures and vectors of a surface chart

• Calculating Gaussian and mean curvature of a surface chart
• Calculating normal and geodesic curvature of a unit-speed curve on
a surface

• Calculating the normal and geodesic curvature of a (possibly not
unit-speed) curve on a surface from the formulae

• Classifying surface points as elliptic, parabolic, hyperbolic, planar,
umbilical
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1 Curves

Definition 1.1: Length of a curve

The length of the curve 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 is

𝐿(𝛾𝛾𝛾 ) = ∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑢)‖ 𝑑𝑢 .

Example 1.2: Length of the Helix

Question. Compute the length of the Helix

𝛾𝛾𝛾 (𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡), 𝐻 𝑡) , 𝑡 ∈ (0, 2𝜋) .
Solution. We compute

̇𝛾𝛾𝛾 (𝑡) = (−𝑅 sin(𝑡), 𝑅 cos(𝑡), 𝐻) ‖ ̇𝛾𝛾𝛾 (𝑡)‖ = √𝑅2 + 𝐻 2

𝐿(𝛾𝛾𝛾 ) = ∫
2𝜋

0
‖ ̇𝛾𝛾𝛾 (𝑢)‖ 𝑑𝑢 = 2𝜋√𝑅2 + 𝐻 2

Definition 1.3: Arc-Length of a curve

The arc-length along 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 from 𝑡0 to 𝑡 is

𝑠 ∶ (𝑎, 𝑏) → ℝ , 𝑠(𝑡) = ∫
𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝑢)‖𝑑𝑢 .

Example 1.4: Arc-length of Logarithmic Spiral

Question. Compute the arc-length of

𝛾𝛾𝛾 (𝑡) = (𝑒𝑘𝑡 cos(𝑡), 𝑒𝑘𝑡 sin(𝑡), 0) .
Solution. The arc-length starting from 𝑡0 is

̇𝛾𝛾𝛾 (𝑡) = 𝑒𝑘𝑡 (𝑘 cos(𝑡) − sin(𝑡), 𝑘 sin(𝑡) + cos(𝑡), 0)
‖ ̇𝛾𝛾𝛾 (𝑡)‖2 = (𝑘2 + 1)𝑒2𝑘𝑡

𝑠(𝑡) = ∫
𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 = √𝑘2 + 1

𝑘 (𝑒𝑘𝑡 − 𝑒𝑘𝑡0) .

Definition 1.5: Unit-speed curve

A curve 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 is unit-speed if

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = 1 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Proposition 1.6

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be unit-speed. Then

̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 = 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Proof

Since 𝛾𝛾𝛾 is unit-speed, we have ̇𝛾𝛾𝛾 ⋅ ̇𝛾𝛾𝛾 = 1. Differentiating both sides,
we get the thesis:

0 = 𝑑
𝑑𝑡 ( ̇𝛾𝛾𝛾 ⋅ ̇𝛾𝛾𝛾 ) = ̈𝛾𝛾𝛾 ⋅ ̇𝛾𝛾𝛾 + ̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 = 2 ̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 .

Definition 1.7: Reparametrization

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3. A reparametrization of 𝛾𝛾𝛾 is a curve
̃𝛾𝛾𝛾 ∶ (�̃�, �̃�) → ℝ3 such that

̃𝛾𝛾𝛾 (𝑡) = 𝛾𝛾𝛾 (𝜙(𝑡)) , ∀ 𝑡 ∈ (�̃�, �̃�) ,
for 𝜙 ∶ (�̃�, �̃�) → (𝑎, 𝑏) diffeomorphism. We call both 𝜙 and 𝜙−1
reparametrization maps.

Definition 1.8: Unit-speed reparametrization

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3. A unit-speed reparametrization of 𝛾𝛾𝛾 is a
reparametrization ̃𝛾𝛾𝛾 ∶ (�̃�, �̃�) → ℝ3 which is unit-speed, that is,

‖ ̇̃𝛾𝛾𝛾 (𝑡)‖ = 1 , ∀ 𝑡 ∈ (�̃�, �̃�) .

Definition 1.9: Regular curve

A curve 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 is regular if

‖ ̇𝛾𝛾𝛾 (𝑡)‖ ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏)

Theorem 1.10: Existence of unit-speed reparametrization

Let 𝛾𝛾𝛾 be a curve. They are equivalent:

1. 𝛾𝛾𝛾 is regular,
2. 𝛾𝛾𝛾 admits unit-speed reparametrization.

Theorem 1.11: Characterization of unit-speed reparametrizations

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a regular curve. Let ̃𝛾𝛾𝛾 ∶ (�̃�, �̃�) → ℝ3 be a
reparametrization of 𝛾𝛾𝛾 , that is,

𝛾𝛾𝛾 (𝑡) = ̃𝛾𝛾𝛾 (𝜙(𝑡)), ∀ 𝑡 ∈ (𝑎, 𝑏)
for some diffeomorphism 𝜙 ∶ (𝑎, 𝑏) → (�̃�, �̃�). We have

1. If ̃𝛾𝛾𝛾 is unit-speed, there exists 𝑐 ∈ ℝ such that

𝜙(𝑡) = ±𝑠(𝑡) + 𝑐 , ∀ 𝑡 ∈ (𝑎, 𝑏) . (1.1)

2. If 𝜙 is given by (1.1), then ̃𝛾𝛾𝛾 is unit-speed.
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Definition 1.12: Arc-length reparametrization

Let 𝛾𝛾𝛾 be regular. The arc-length reparametrization of 𝛾𝛾𝛾 is

̃𝛾𝛾𝛾 = 𝛾𝛾𝛾 ∘ 𝑠−1 ,
with 𝑠−1 inverse of the arc-length function of 𝛾𝛾𝛾 .

Example 1.13: Reparametrization by arc-length

Question. Consider the curve

𝛾𝛾𝛾 (𝑡) = (5 cos(𝑡), 5 sin(𝑡), 12𝑡) .
Prove that 𝛾𝛾𝛾 is regular, and reparametrize it by arc-length.
Solution. 𝛾𝛾𝛾 is regular because

̇𝛾𝛾𝛾 (𝑡) = (−5 sin(𝑡), 5 cos(𝑡), 12) , ‖ ̇𝛾𝛾𝛾 (𝑡)‖ = 13 ≠ 0
The arc-length of 𝛾𝛾𝛾 starting from 𝑡0 = 0, and its inverse, are

𝑠(𝑡) = ∫
𝑡

0
‖ ̇𝛾𝛾𝛾 (𝑢)‖ 𝑑𝑢 = 13𝑡 , 𝑡(𝑠) = 𝑠

13 .

The arc-length reparametrization of 𝛾𝛾𝛾 is

̃𝛾𝛾𝛾 (𝑠) = 𝛾𝛾𝛾 (𝑡(𝑠)) = (5 cos ( 𝑠
13) , 5 sin (

𝑠
13) ,

12
13 𝑠) .

1.1 Curvature

Definition 1.14: Curvature of unit-speed curve

The curvature of a unit-speed curve 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 is

𝜅(𝑡) = ‖ ̈𝛾𝛾𝛾 (𝑡)‖ .

Example 1.15: Curvature of the Circle

Question. Compute the curvature of the circle of radius 𝑅 > 0

𝛾𝛾𝛾 (𝑡) = (𝑥0 + 𝑅 cos ( 𝑡
𝑅) , 𝑦0 + sin ( 𝑡

𝑅) , 0) .

Solution. First, check that 𝛾𝛾𝛾 is unit-speed:

̇𝛾𝛾𝛾 (𝑡) = (− sin ( 𝑡
𝑅) , cos (

𝑡
𝑅) , 0) , ‖ ̇𝛾𝛾𝛾 (𝑡)‖ = 1

Now, compute second derivative and curvature

̈𝛾𝛾𝛾 (𝑡) = (− 1
𝑅 cos ( 𝑡

𝑅) , −
1
𝑅 sin ( 𝑡

𝑅) , 0) ,

𝜅(𝑡) = ‖ ̈𝛾𝛾𝛾 (𝑡)‖ = 1
𝑅 .

Definition 1.16: Curvature of regular curve

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a regular curve and ̃𝛾𝛾𝛾 be a unit-speed
reparametrization of 𝛾𝛾𝛾 , with 𝛾𝛾𝛾 = ̃𝛾𝛾𝛾 ∘ 𝜙 and 𝜙 ∶ (𝑎, 𝑏) → (�̃�, �̃�). Let
�̃� ∶ (�̃�, �̃�) → ℝ be the curvature of ̃𝛾𝛾𝛾 . The curvature of 𝛾𝛾𝛾 is

𝜅(𝑡) = �̃�(𝜙(𝑡)) .

Remark 1.17: Computing curvature of regular 𝛾𝛾𝛾

1. Compute the arc-length 𝑠(𝑡) of 𝛾𝛾𝛾 and its inverse 𝑡(𝑠).
2. Compute the arc-length reparametrization

̃𝛾𝛾𝛾 (𝑠) = 𝛾𝛾𝛾 (𝑡(𝑠)) .

3. Compute the curvature of ̃𝛾𝛾𝛾
�̃�(𝑠) = ‖ ̈̃𝛾𝛾𝛾 (𝑠)‖ .

4. The curvature of 𝛾𝛾𝛾 is

𝜅(𝑡) = �̃�(𝑠(𝑡)) .

Definition 1.18: Hyperbolic functions

cosh(𝑡) = 𝑒𝑡 + 𝑒−𝑡
2 sinh(𝑡) = 𝑒𝑡 − 𝑒−𝑡

2
tanh(𝑡) = sinh(𝑡)

cosh(𝑡) coth(𝑡) = cosh(𝑡)
sinh(𝑡)

sech(𝑡) = 1
cosh(𝑡) csch(𝑡) = 1

sinh(𝑡)

Theorem 1.19: Properties of Hyperbolic Functions

cosh2(𝑡) − sinh2(𝑡) = 1 sech2(𝑡) + tanh2(𝑡) = 1
sinh(𝑡)′ = cosh(𝑡) cosh(𝑡)′ = sinh(𝑡)
tanh(𝑡)′ = sech2(𝑡) sech(𝑡)′ = − sech(𝑡) tanh(𝑡)

Example 1.20: Curvature of the Catenary

Question. Consider the Catenary curve

𝛾𝛾𝛾 (𝑡) = (𝑡, cosh(𝑡)) , 𝑡 ∈ ℝ .
1. Prove that 𝛾𝛾𝛾 is regular.
2. Compute the arc-length reparametrization of 𝛾𝛾𝛾 .
3. Compute the curvature of ̃𝛾𝛾𝛾 .
4. Compute the curvature of 𝛾𝛾𝛾 .

Solution.

1. 𝛾𝛾𝛾 is regular because

̇𝛾𝛾𝛾 (𝑡) = (1, sinh(𝑡))
‖ ̇𝛾𝛾𝛾 ‖ = √1 + sinh2(𝑡) = cosh(𝑡) ≥ 1

2. The arc-length of 𝛾𝛾𝛾 starting at 𝑡0 = 0 is

𝑠(𝑡) = ∫
𝑡

0
‖ ̇𝛾𝛾𝛾 (𝑢)‖ 𝑑𝑢 = ∫

𝑡

0
cosh(𝑢) 𝑑𝑢 = sinh(𝑡)

where we used that sinh(0) = 0. Moreover,

𝑠 = sinh(𝑡) ⟺ 𝑠 = 𝑒𝑡 − 𝑒−𝑡
2

⟺ 𝑒2𝑡 − 2𝑠𝑒𝑡 − 1 = 0
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Substitute 𝑦 = 𝑒𝑡 to obtain

𝑒2𝑡 − 2𝑠𝑒𝑡 − 1 = 0 ⟺ 𝑦2 − 2𝑠𝑦 − 1 = 0
⟺ 𝑦± = 𝑠 ± √1 + 𝑠2 .

Notice that

𝑦+ = 𝑠 + √1 + 𝑠2 ≥ 𝑠 + √𝑠2 = 𝑠 + |𝑠| ≥ 0
by definition of absolute value. Therefore,

𝑒𝑡 = 𝑦+ = 𝑠 + √1 + 𝑠2 ⟹ 𝑡(𝑠) = log (𝑠 + √1 + 𝑠2)

The arc-length reparametrization of 𝛾𝛾𝛾 is

̃𝛾𝛾𝛾 (𝑠) = 𝛾𝛾𝛾 (𝑡(𝑠)) = (log (𝑠 + √1 + 𝑠2) , √1 + 𝑠2)

3. Compute the curvature of ̃𝛾𝛾𝛾

̇̃𝛾𝛾𝛾 (𝑠) = ( 1
√1 + 𝑠2

, 𝑠
√1 + 𝑠2

)

̈̃𝛾𝛾𝛾 (𝑠) = (− 𝑠
(1 + 𝑠2)3/2 ,

1
(1 + 𝑠2)3/2 )

�̃�(𝑠) = ‖ ̈̃𝛾𝛾𝛾 (𝑠)‖ = 1
1 + 𝑠2

4. Recalling that 𝑠(𝑡) = sinh(𝑡), the curvature of 𝛾𝛾𝛾 is

𝜅(𝑡) = �̃�(𝑠(𝑡)) = 1
1 + sinh2(𝑡)

= 1
cosh2(𝑡)

.

Definition 1.21: Vector product

The vector product of two vectors u, v ∈ ℝ3 is

u × v = |
i j k
𝑢1 𝑢2 𝑢2
𝑣1 𝑣2 𝑣3

| .

Theorem 1.22: Geometric Properties of vector product

Let u, v ∈ ℝ3 be linearly independent. Then

• u × v is orthogonal to the plane spanned by u, v
• ‖u × v‖ is the area of the parallelogram with sides u, v
• The triple (u, v,u × v) is a positive basis of ℝ3

Theorem 1.23

For all u, v,w ∈ ℝ3 it holds:

(u × v) ×w = (u ⋅w)v − (v ⋅w)u

Theorem 1.24

Let 𝛾𝛾𝛾 , 𝜂𝜂𝜂 ∶ (𝑎, 𝑏) → ℝ3. Then, the curve 𝛾𝛾𝛾 × 𝜂𝜂𝜂 is smooth, and

𝑑
𝑑𝑡 (𝛾𝛾𝛾 × 𝜂𝜂𝜂) = ̇𝛾𝛾𝛾 × 𝜂𝜂𝜂 + 𝛾𝛾𝛾 × ̇𝜂𝜂𝜂 .

Theorem 1.25: Curvature formula

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be regular. The curvature of 𝛾𝛾𝛾 is

𝜅(𝑡) = ‖ ̇𝛾𝛾𝛾 (𝑡) × ̈𝛾𝛾𝛾 (𝑡)‖
‖ ̇𝛾𝛾𝛾 (𝑡)‖3

.

Example 1.26: Curvature of the Helix

Question. Consider the Helix of radius 𝑅 > 0 and rise 𝐻 ,

𝛾𝛾𝛾 (𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡), 𝐻 𝑡) .
1. Prove that 𝛾𝛾𝛾 is regular.
2. Compute the curvature of 𝛾𝛾𝛾 .

Solution.

1. 𝛾𝛾𝛾 is regular because

̇𝛾𝛾𝛾 (𝑡) = (−𝑅 sin(𝑡), 𝑅 cos(𝑡), 𝐻)
‖ ̇𝛾𝛾𝛾 (𝑡)‖ = √𝑅2 + 𝐻 2 ≥ 𝑅 > 0

2. Compute the curvature using the formula:

̈𝛾𝛾𝛾 (𝑡) = (−𝑅 cos(𝑡), −𝑅 sin(𝑡), 0)
̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 = (𝑅𝐻 sin(𝑡), −𝑅𝐻 cos(𝑡), 𝑅2)

‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ = 𝑅√𝑅2 + 𝐻 2

𝜅(𝑡) = ‖ ̇𝛾𝛾𝛾 (𝑡) × ̈𝛾𝛾𝛾 (𝑡)‖
‖ ̇𝛾𝛾𝛾 (𝑡)‖3

= 𝑅
𝑅2 + 𝐻 2

Example 1.27: Calculation of curvature

Question. Define the curve

𝛾𝛾𝛾 (𝑡) = (85 cos(𝑡), 1 − 2 sin(𝑡), 65 cos(𝑡)) .

1. Prove that 𝛾𝛾𝛾 is regular.
2. Compute the curvature of 𝛾𝛾𝛾 .

Solution.

1. 𝛾𝛾𝛾 is regular because

̇𝛾𝛾𝛾 = (−8
5 sin(𝑡), −2 cos(𝑡), −6

5 sin(𝑡)) , ‖ ̇𝛾𝛾𝛾 ‖ = 2 ≠ 0 .

2. Compute the curvature using the formula:

̈𝛾𝛾𝛾 = (−8
5 cos(𝑡), 2 sin(𝑡), −6

5 cos(𝑡)) ‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ = 4

̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 = (−12
5 , 0, 165 ) 𝜅 = 1

2 .
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Example 1.28: Different curves, same curvature

Question Let 𝛾𝛾𝛾 be a circle

𝛾𝛾𝛾 (𝑡) = (2 cos(𝑡), 2 sin(𝑡), 0) ,
and 𝜂𝜂𝜂 be a helix of radius 𝑆 > 0 and rise 𝐻 > 0

𝜂𝜂𝜂(𝑡) = (𝑆 cos(𝑡), 𝑆 sin(𝑡), 𝐻 𝑡) .
Find 𝑆 and 𝐻 such that 𝛾𝛾𝛾 and 𝜂𝜂𝜂 have the same curvature.
Solution. Curvatures of 𝛾𝛾𝛾 and 𝜂𝜂𝜂 were already computed:

𝜅𝛾𝛾𝛾 = 1
2 , 𝜅𝜂𝜂𝜂 = 𝑆

𝑆2 + 𝐻 2 .

Imposing that 𝜅𝛾𝛾𝛾 = 𝜅𝜂𝜂𝜂, we get

1
2 = 𝑆

𝑆2 + 𝐻 2 ⟹ 𝐻 2 = 2𝑆 − 𝑆2 .

Choosing 𝑆 = 1 and 𝐻 = 1 yields 𝜅𝛾𝛾𝛾 = 𝜅𝜂𝜂𝜂.

1.2 Frenet frame and torsion

Definition 1.29: Frenet frame of unit-speed curve

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be unit-speed, with 𝜅 ≠ 0.
1. The tangent vector to 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is

t(𝑡) = ̇𝛾𝛾𝛾 (𝑡) .

2. The principal normal vector to 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is

n(𝑡) = ̈𝛾𝛾𝛾 (𝑡)
𝜅(𝑡) .

3. The binormal vector to 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is
b(𝑡) = ̇𝛾𝛾𝛾 (𝑡) × n(𝑡) .

4. The Frenet frame of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is the triple

{t(𝑡),n(𝑡), b(𝑡)} .

Theorem 1.30: Frenet frame is orthonormal basis

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be unit-speed, with 𝜅 ≠ 0. The Frenet frame

{t(𝑡),n(𝑡), b(𝑡)}
is a positive orthonomal basis of ℝ3 for each 𝑡 ∈ (𝑎, 𝑏).

Definition 1.31: Torsion of unit-speed curve with 𝜅 ≠ 0

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be unit-speed, with 𝜅 ≠ 0. The torsion of 𝛾𝛾𝛾 is
the unique scalar 𝜏 (𝑡) such that

ḃ(𝑡) = −𝜏(𝑡)n(𝑡) .
In particular,

𝜏 (𝑡) = −ḃ(𝑡) ⋅ n(𝑡) .

Definition 1.32: Torsion of regular curve with 𝜅 ≠ 0

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a regular curve with 𝜅 ≠ 0. Let ̃𝛾𝛾𝛾 be a unit-
speed reparametrization of 𝛾𝛾𝛾 with 𝛾𝛾𝛾 = ̃𝛾𝛾𝛾 ∘ 𝜙 and 𝜙 ∶ (𝑎, 𝑏) → (�̃�, �̃�).
Let ̃𝜏 ∶ (�̃�, �̃�) → ℝ be the torsion of ̃𝛾𝛾𝛾 . The torsion of 𝛾𝛾𝛾 is

𝜏 (𝑡) = ̃𝜏 (𝜙(𝑡)) .

Example 1.33: Curvature and torsion of Helix with Frenet frame

Question. Consider the Helix of radius 𝑅 > 0 and rise 𝐻
𝛾𝛾𝛾(𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡), 𝑡𝐻 ) , 𝑡 ∈ ℝ .

1. Compute the arc-length reparametrization ̃𝛾𝛾𝛾 of 𝛾𝛾𝛾 .
2. Compute Frenet frame, curvature and torsion of ̃𝛾𝛾𝛾 .
3. Compute curvature and torsion 𝛾𝛾𝛾 .

Solution.

1. The arc-length of 𝛾𝛾𝛾 starting at 𝑡0 = 0, and its inverse, are

̇𝛾𝛾𝛾 (𝑡) = (−𝑅 sin(𝑡), 𝑅 cos(𝑡), 𝐻)
‖ ̇𝛾𝛾𝛾 ‖ = 𝜌, 𝜌 ∶= √𝑅2 + 𝐻 2

𝑠(𝑡) = ∫
𝑡

0
‖ ̇𝛾𝛾𝛾 (𝑢)‖ 𝑑𝑢 = 𝜌𝑡 , 𝑡(𝑠) = 𝑠

𝜌 .

The arc-length reparametrization ̃𝛾𝛾𝛾 of 𝛾𝛾𝛾 is

̃𝛾𝛾𝛾 (𝑠) = 𝛾𝛾𝛾 (𝑡(𝑠)) = (𝑅 cos ( 𝑠𝜌 ) , 𝑅 sin ( 𝑠𝜌 ) ,
𝐻𝑠
𝜌 ) .

2. Compute the tangent vector to ̃𝛾𝛾𝛾 and its derivative

t̃(𝑠) = ̇̃𝛾𝛾𝛾 = 1
𝜌 (−𝑅 sin ( 𝑠𝜌 ) , 𝑅 cos ( 𝑠𝜌 ) , 𝐻)

̇t̃(𝑠) = 𝑅
𝜌2 (− cos ( 𝑠𝜌 ) , − sin ( 𝑠𝜌 ) , 0)

The curvature of ̃𝛾𝛾𝛾 is

�̃�(𝑠) = ‖ ̈̃𝛾𝛾𝛾 (𝑠)‖ = ‖ ̇t̃(𝑠)‖ = 𝑅
𝑅2 + 𝐻 2 .

The principal normal vector and binormal are

ñ(𝑠) = t̃
�̃� = (− cos ( 𝑠𝜌 ) , − sin ( 𝑠𝜌 ) , 0)

b̃(𝑠) = t̃ × ñ = 1
𝜌 (𝐻 sin ( 𝑠𝜌 ) , −𝐻 cos ( 𝑠𝜌 ) , 𝑅) .

We are left to compute the torsion of ̃𝛾𝛾𝛾 :
̇b̃(𝑠) = 𝐻

𝜌2 (cos (
𝑠
𝜌 ) , sin (

𝑠
𝜌 ) , 0)

̇b̃(𝑠) ⋅ ñ(𝑠) = − 𝐻
𝜌2

̃𝜏 (𝑠) = − ̇b̃(𝑠) ⋅ ñ(𝑠) = 𝐻
𝜌2 = 𝐻

𝑅2 + 𝐻 2

3. The curvature and torsion of 𝛾𝛾𝛾 are

𝜅(𝑡) = �̃�(𝑠(𝑡)) = 𝑅
𝑅2 + 𝐻 2

𝜏 (𝑡) = ̃𝜏 (𝑠(𝑡)) = 𝐻
𝑅2 + 𝐻 2
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Theorem 1.34: Torsion formula

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be regular, with 𝜅 ≠ 0. The torsion of 𝛾𝛾𝛾 is

𝜏 (𝑡) = ( ̇𝛾𝛾𝛾 (𝑡) × ̈𝛾𝛾𝛾 (𝑡)) ⋅ ⃛𝛾𝛾𝛾 (𝑡)
‖ ̇𝛾𝛾𝛾 (𝑡) × ̈𝛾𝛾𝛾 (𝑡)‖2

.

Example 1.35: Torsion of the Helix with formula

Question. Consider the Helix of radius 𝑅 > 0 and rise 𝐻 > 0
𝛾𝛾𝛾 (𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡), 𝐻 𝑡) , 𝑡 ∈ ℝ .

1. Prove that 𝛾𝛾𝛾 is regular with non-vanishing curvature.
2. Compute the torsion of 𝛾𝛾𝛾 .

Solution.

1. 𝛾𝛾𝛾 is regular with non-vanishing curvature, since

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = √𝑅2 + 𝐻 2 ≥ 𝑅 > 0 , 𝜅 = 𝑅
𝑅2 + 𝐻 2 > 0 .

2. We compute the torsion using the formula:

̇𝛾𝛾𝛾 (𝑡) = (−𝑅 sin(𝑡), 𝑅 cos(𝑡), 𝐻)
̈𝛾𝛾𝛾 (𝑡) = (−𝑅 cos(𝑡), −𝑅 sin(𝑡), 0)
⃛𝛾𝛾𝛾 (𝑡) = (𝑅 sin(𝑡), −𝑅 cos(𝑡), 0)

̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 = (𝑅𝐻 sin(𝑡), −𝑅𝐻 cos(𝑡), 𝑅2)
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ = 𝑅√𝑅2 + 𝐻 2

( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾 = 𝑅2𝐻
𝜏(𝑡) = ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾

‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖2
= 𝐻

𝑅2 + 𝐻 2

Example 1.36: Calculation of torsion

Question. Compute the torsion of the curve

𝛾𝛾𝛾 (𝑡) = (85 cos(𝑡), 1 − 2 sin(𝑡), 65 cos(𝑡)) .

Solution. Resuming calculations from Example 1.27,

⃛𝛾𝛾𝛾 = (85 sin(𝑡), 2 cos(𝑡), 65 sin(𝑡))

( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾 = 96
25 sin(𝑡) − 96

25 sin(𝑡) = 0

𝜏(𝑡) = ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖2

= 0

Theorem 1.37: General Frenet frame formulas

The Frenet frame of a regular curve 𝛾𝛾𝛾 is

t = ̇𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 ‖ , b = ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾

‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ , n = b × t = ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) × ̇𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ ‖ ̇𝛾𝛾𝛾 ‖ .

Example 1.38: Twisted cubic

Question. Let 𝛾𝛾𝛾 ∶ ℝ → ℝ3 be the twisted cubic

𝛾𝛾𝛾 (𝑡) = (𝑡, 𝑡2, 𝑡3) .
1. Is 𝛾𝛾𝛾 regular/unit-speed? Justify your answer.
2. Compute the curvature and torsion of 𝛾𝛾𝛾 .
3. Compute the Frenet frame of 𝛾𝛾𝛾 .

Solution.

1. 𝛾𝛾𝛾 is regular, but not-unit speed, because

̇𝛾𝛾𝛾 (𝑡) = (1, 2𝑡, 3𝑡2)
‖ ̇𝛾𝛾𝛾 (𝑡)‖ = √1 + 4𝑡2 + 9𝑡4 ≥ 1 ‖ ̇𝛾𝛾𝛾 (1)‖ = √14 ≠ 1

2. Compute the following quantities

̈𝛾𝛾𝛾 = (0, 2, 6𝑡) ‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ = 2√1 + 9𝑡2 + 9𝑡4
⃛𝛾𝛾𝛾 = (0, 0, 6) ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾 = 12
̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 = (6𝑡2, −6𝑡, 2)

Compute curvature and torsion using the formulas:

𝜅(𝑡) = ‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖
‖ ̇𝛾𝛾𝛾 ‖3

= 2√1 + 9𝑡2 + 9𝑡4
(1 + 4𝑡2 + 9𝑡4)3/2

𝜏 (𝑡) = ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖2

= 3
1 + 9𝑡2 + 9𝑡4 .

3. By the Frenet frame formulas and the above calculations,

t = ̇𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 ‖ =

1
√1 + 4𝑡2 + 9𝑡4

(1, 2𝑡, 3𝑡2)

b = ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ =

1
√1 + 9𝑡2 + 9𝑡4

(3𝑡2, −3𝑡, 1)

n = b × t = (−9𝑡3 − 2𝑡, 1 − 9𝑡4, 6𝑡3 + 3𝑡)
√1 + 9𝑡2 + 9𝑡4 √1 + 4𝑡2 + 9𝑡4

1.3 Frenet-Serret equations

Theorem 1.39: Frenet-Serret equations

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be unit-speed with 𝜅 ≠ 0. The Frenet frame of 𝛾𝛾𝛾
solves the Frenet-Serret equations

̇t = 𝜅n , ṅ = −𝜅t + 𝜏b , ḃ = −𝜏n .

Definition 1.40: Rigid motion

A rigid motion of ℝ3 is a map 𝑀 ∶ ℝ3 → ℝ3 of the form

𝑀(v) = 𝑅v + p , v ∈ ℝ3 ,
where p ∈ ℝ3, and 𝑅 ∈ SO(3) rotation matrix,

SO(3) = {𝑅 ∈ ℝ3×3 ∶ 𝑅𝑇𝑅 = 𝐼 , det(𝑅) = 1} .
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Theorem 1.41: Fundamental Theorem of Space Curves

Let 𝜅, 𝜏 ∶ (𝑎, 𝑏) → ℝ be smooth, with 𝜅 > 0. Then:
1. There exists a unit-speed curve 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 with curvature

𝜅(𝑡) and torsion 𝜏 (𝑡).
2. Suppose that ̃𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 is a unit-speed curve whose cur-

vature �̃� and torsion ̃𝜏 satisfy

�̃�(𝑡) = 𝜅(𝑡) , ̃𝜏 (𝑡) = 𝜏(𝑡) , ∀ 𝑡 ∈ (𝑎, 𝑏) .
There exists a rigid motion 𝑀 ∶ ℝ3 → ℝ3 such that

̃𝛾𝛾𝛾 (𝑡) = 𝑀(𝛾𝛾𝛾 (𝑡)) , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Example 1.42: Application of FTSC

Question. Consider the curve

𝛾𝛾𝛾 (𝑡) = (√3 𝑡 − sin(𝑡), √3 sin(𝑡) + 𝑡, 2 cos(𝑡)) .
1. Calculate the curvature and torsion of 𝛾𝛾𝛾 .
2. The helix of radius 𝑅 and rise 𝐻 is parametrized by

𝜂𝜂𝜂(𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡), 𝐻 𝑡) .
Recall that 𝜂𝜂𝜂 has curvature and torsion

𝜅𝜂𝜂𝜂 = 𝑅
𝑅2 + 𝐻 2 , 𝜏𝜂𝜂𝜂 = 𝐻

𝑅2 + 𝐻 2 .

Prove that there exist a rigid motion 𝑀 ∶ ℝ3 → ℝ3 such that

𝛾𝛾𝛾 (𝑡) = 𝑀(𝜂𝜂𝜂(𝑡)) , ∀ 𝑡 ∈ ℝ . (1.2)

Solution.

1. Compute curvature and torsion with the formulas

̇𝛾𝛾𝛾 (𝑡) = (√3 − cos(𝑡), √3 cos(𝑡) + 1, −2 sin(𝑡))
̈𝛾𝛾𝛾 (𝑡) = (sin(𝑡), −√3 sin(𝑡), −2 cos(𝑡))
⃛𝛾𝛾𝛾 (𝑡) = (cos(𝑡), −√3 cos(𝑡), 2 sin(𝑡))
̇𝛾𝛾𝛾 (𝑡) × ̈𝛾𝛾𝛾 (𝑡) = (−2 (√3 + cos(𝑡)) , 2 (√3 cos(𝑡) − 1) , −4 sin(𝑡))
‖ ̇𝛾𝛾𝛾 (𝑡) × ̈𝛾𝛾𝛾 (𝑡)‖2 = 32
‖ ̇𝛾𝛾𝛾 (𝑡)‖2 = 8
( ̇𝛾𝛾𝛾 (𝑡) × ̈𝛾𝛾𝛾 (𝑡)) ⋅ ⃛𝛾𝛾𝛾 (𝑡) = −8
𝜅(𝑡) = ‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖

‖ ̇𝛾𝛾𝛾 ‖3
= √32

8 3
2

= 1
4

𝜏(𝑡) = ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖2

= −8
32 = −1

4 .

2. Equating 𝜅 = 𝜅𝜂𝜂𝜂 and 𝜏 = 𝜏𝜂𝜂𝜂, we obtain

𝑅
𝑅2 + 𝐻 2 = 1

4 , 𝐻
𝑅2 + 𝐻 2 = −1

4
Rearranging both equalities we get

𝑅2 + 𝐻 2 = 4𝑅 , 𝑅2 + 𝐻 2 = −4𝐻 ,
from which we find the relation 𝑅 = −𝐻 . Substituting into
𝑅2 + 𝐻 2 = −4𝐻 , we get

𝐻 = −2 , 𝑅 = −𝐻 = 2 .
For these values of 𝑅 and 𝐻 we have 𝜅 = 𝜅𝜂𝜂𝜂 and 𝜏 = 𝜏𝜂𝜂𝜂. By the
FTSC, there exists a rigid motion 𝑀 ∶ ℝ3 → ℝ3 satisfying (1.2).

Theorem 1.43: Curves contained in a plane - Part I

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be regular with 𝜅 ≠ 0. They are equivalent:

1. The torsion of 𝛾𝛾𝛾 satisfies

𝜏 (𝑡) = 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

2. 𝛾𝛾𝛾 is contained in a plane: There exists a vector P ∈ ℝ3 and a
scalar 𝑑 ∈ ℝ such that

𝛾𝛾𝛾 (𝑡) ⋅ P = 𝑑 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Theorem 1.44: Curves contained in a plane - Part II

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be regular, with 𝜅 ≠ 0 and 𝜏 = 0. Then, the
binormal b is a constant vector, and 𝛾𝛾𝛾 is contained in the plane of
equation

(x − 𝛾𝛾𝛾 (𝑡0)) ⋅ b = 0 .

Example 1.45: A planar curve

Question. Consider the curve

𝛾𝛾𝛾 (𝑡) = (𝑡, 2𝑡, 𝑡4) , 𝑡 > 0 .
1. Prove that 𝛾𝛾𝛾 is regular.

2. Compute the curvature and torsion of 𝛾𝛾𝛾 .
3. Prove that 𝛾𝛾𝛾 is contained in a plane. Compute the equation of

such plane.

Solution.

1. 𝛾𝛾𝛾 is regualar because ̇𝛾𝛾𝛾 (𝑡) = (1, 2, 4𝑡3) ≠ 000.
2. Compute the following quantities

‖ ̇𝛾𝛾𝛾 ‖ = √5 + 16𝑡4 ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 = 12 (2𝑡2, −𝑡2, 0)
̈𝛾𝛾𝛾 = 12 (0, 0, 𝑡2) ‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ = 12√5 𝑡2
⃛𝛾𝛾𝛾 = 24 (0, 0, 𝑡) ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾 = 0

Compute curvature and torsion with the formulas

𝜅(𝑡) = ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 ‖3

= 12√5 𝑡2
√5 + 16𝑡4

𝜏 (𝑡) = ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ = 0 .

3. 𝛾𝛾𝛾 lies in a plane because 𝜏 = 0. The binormal is

b = ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ =

1
√5

(2, −1, 0) .

At 𝑡0 = 0 we have 𝛾𝛾𝛾 (0) = 000. The equation of the plane contain-
ing 𝛾𝛾𝛾 is then x ⋅ b = 0, which reads

2
√5

𝑥 − 1
√5

𝑦 = 0 ⟹ 2𝑥 − 𝑦 = 0 .
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Theorem 1.46: Curves contained in a circle

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be unit-speed. They are equivalent:

1. 𝛾𝛾𝛾 is contained in a circle of radius 𝑅 > 0.
2. There exists 𝑅 > 0 such that

𝜅(𝑡) = 1
𝑅 , 𝜏 (𝑡) = 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Example 1.47: A curve contained in a circle

Question. Consider the curve

𝛾𝛾𝛾 (𝑡) = (45 cos(𝑡), 1 − sin(𝑡), −3
5 cos(𝑡)) .

1. Prove that 𝛾𝛾𝛾 is unit-speed.
2. Compute Frenet frame, curvature and torsion of 𝛾𝛾𝛾 .
3. Prove that 𝛾𝛾𝛾 is part of a circle.

Solution.

1. 𝛾𝛾𝛾 is unit-speed because

̇𝛾𝛾𝛾 (𝑡) = (−4
5 sin(𝑡), − cos(𝑡), 35 sin(𝑡))

‖ ̇𝛾𝛾𝛾 (𝑡)‖2 = 16
25 sin2(𝑡) + cos2(𝑡) + 9

25 sin2(𝑡) = 1

2. As 𝛾𝛾𝛾 is unit-speed, the tangent vector is t(𝑡) = ̇𝛾𝛾𝛾 (𝑡). The curva-
ture, normal, binormal and torsion are

̇t(𝑡) = (−4
5 cos(𝑡), sin(𝑡), 35 cos(𝑡))

𝜅(𝑡) = ‖ ̇t(𝑡)‖ = 16
25 cos2(𝑡) + sin2(𝑡) + 9

25 cos2(𝑡) = 1

n(𝑡) = 1
𝜅(𝑡) ̈𝛾𝛾𝛾 (𝑡) = (−4

5 cos(𝑡), sin(𝑡), 35 cos(𝑡))

b(𝑡) = ̇𝛾𝛾𝛾 (𝑡) × n(𝑡) = (−3
5 , 0, −

4
5)

ḃ = 000
𝜏 = −ḃ ⋅ n = 0

3. The curvature of 𝛾𝛾𝛾 is constant and the torsion is zero. Therefore
𝛾𝛾𝛾 is contained in a circle of radius

𝑅 = 1
𝜅 = 1 .
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2 Topology

Definition 2.1: Topological space

Let 𝑋 be a set and 𝒯 a collection of subsets of 𝑋 . We say that 𝒯 is
a topology on 𝑋 if the following 3 properties hold:

• (A1) The sets ∅, 𝑋 belong to 𝒯 ,

• (A2) If {𝐴𝑖}𝑖∈𝐼 is an arbitrary family of elements of 𝒯 , then

⋃
𝑖∈𝐼

𝐴𝑖 ∈ 𝒯 .

• (A3) If 𝐴, 𝐵 ∈ 𝒯 then 𝐴 ∩ 𝐵 ∈ 𝒯 .

Further, we say:

• The pair (𝑋 , 𝒯 ) is a topological space.
• The elements of 𝑋 are called points.
• The sets in the topology 𝒯 are called open sets.

Definition 2.2: Trivial topology

Let 𝑋 be a set. The trivial topology on 𝑋 is the collection of sets

𝒯trivial ∶= {∅, 𝑋} .

Definition 2.3: Discrete topology

Let 𝑋 be a set. The discrete topology on 𝑋 is the collection of all
subsets of 𝑋

𝒯discrete ∶= {𝐴 ∶ 𝐴 ⊆ 𝑋} .

Definition 2.4: Open set of ℝ𝑛

Let 𝐴 ⊆ ℝ𝑛 . We say that the set 𝐴 is open if it holds:

∀x ∈ 𝐴 , ∃ 𝑟 > 0 s.t. 𝐵𝑟 (x) ⊆ 𝐴 , (2.1)

where 𝐵𝑟 (x) is the ball of radius 𝑟 > 0 centered at x

𝐵𝑟 (x) ∶= {y ∈ ℝ𝑛 ∶ ‖y − x‖ < 𝑟} ,
and the Euclidean norm of x ∈ ℝ𝑛 is defined by

‖x‖ ∶=
√

𝑛
∑
𝑖=1

𝑥2𝑖 .

Definition 2.5: Euclidean topology of ℝ𝑛

The Euclidean topology on ℝ𝑛 is the collection of sets

𝒯euclid ∶= {𝐴 ∶ 𝐴 ⊆ ℝ𝑛 , 𝐴 is open} .

Proof: 𝒯euclid is a topology on ℝ𝑛

To prove 𝒯euclid is a topology on ℝ𝑛 , we need to check the axioms:

• (A1) We have ∅, ℝ𝑛 ∈ 𝒯euclid: Indeed ∅ is open because there is
no point x for which (2.1) needs to be checked. Moreover, ℝ𝑛
is open because (2.1) holds with any radius 𝑟 > 0.

• (A2) Let 𝐴𝑖 ∈ 𝒯euclid for all 𝑖 ∈ 𝐼 . Define the union 𝐴 = ⋃𝑖 𝐴𝑖.
We need to check that 𝐴 is open. Let x ∈ 𝐴. By definition of
union, there exists an index 𝑖0 ∈ 𝐼 such that x ∈ 𝐴𝑖0 . Since 𝐴𝑖0
is open, by (2.1) there exists 𝑟 > 0 such that 𝐵𝑟 (x) ⊆ 𝐴𝑖0 . As
𝐴𝑖0 ⊆ 𝐴, we conclude that 𝐵𝑟 (x) ⊆ 𝐴, so that 𝐴 ∈ 𝒯euclid.

• (A3) Let 𝐴, 𝐵 ∈ 𝒯euclid. We need to check that 𝐴 ∩ 𝐵 is open.
Let x ∈ 𝐴 ∩ 𝐵. Therefore x ∈ 𝐴 and x ∈ 𝐵. Since 𝐴 and 𝐵 are
open, by (2.1) there exist 𝑟1, 𝑟2 > 0 such that 𝐵𝑟1(x) ⊆ 𝐴 and
𝐵𝑟2(x) ⊆ 𝐵. Set 𝑟 ∶= min{𝑟1, 𝑟2}. Then

𝐵𝑟 (x) ⊆ 𝐵𝑟1(x) ⊆ 𝐴 , 𝐵𝑟 (x) ⊆ 𝐵𝑟2(x) ⊆ 𝐵 ,
Hence 𝐵𝑟 (x) ⊆ 𝐴 ∩ 𝐵, showing that 𝐴 ∩ 𝐵 ∈ 𝒯euclid.

This proves that 𝒯euclid is a topology on ℝ𝑛 .

Proposition 2.6: 𝐵𝑟 (x) is an open set of 𝒯euclid

Let ℝ𝑛 be equipped with the Euclidean topology 𝒯euclid. Let 𝑟 > 0
and x ∈ ℝ𝑛 . Then 𝐵𝑟 (x) ∈ 𝒯euclid.

Definition 2.7: Closed set

Let (𝑋 , 𝒯 ) be a topological space. A set 𝐶 ⊆ 𝑋 is closed if

𝐶𝑐 ∈ 𝒯 ,
where 𝐶𝑐 ∶= 𝑋 ∖ 𝐶 is the complement of 𝐶 in 𝑋 .

Definition 2.8: Comparing topologies

Let 𝑋 be a set and let 𝒯1, 𝒯2 be topologies on 𝑋 .

1. 𝒯1 is finer than 𝒯2 if 𝒯2 ⊆ 𝒯1.

2. 𝒯1 is strictly finer than 𝒯2 if 𝒯2 ⊊ 𝒯1.

3. 𝒯1 and 𝒯2 are the same topology if 𝒯1 = 𝒯2.

Example 2.9: Comparing 𝒯trivial and 𝒯discrete

Let 𝑋 be a set. Then 𝒯trivial ⊆ 𝒯discrete.

Example 2.10: Cofinite topology on ℝ

Question. The cofinite topology on ℝ is the collection of sets

𝒯cofinite ∶= {𝑈 ⊆ ℝ ∶ 𝑈 𝑐 is finite, or 𝑈 𝑐 = ℝ} .
11



1. Prove that (ℝ, 𝒯cofinite) is a topological space.
2. Prove that 𝒯cofinite ⊆ 𝒯euclid.
3. Prove that 𝒯cofinite ≠ 𝒯euclid.

Solution. Part 1. Show that the topology properties are satisfied:
(A1) We have ∅ ∈ 𝒯cofinite, since ∅𝑐 = ℝ. We have ℝ ∈ 𝒯cofinite
because ℝ𝑐 = ∅ is finite.
(A2) Let 𝑈𝑖 ∈ 𝒯cofinite for all 𝑖 ∈ 𝐼 , and define 𝑈 ∶= ⋃𝑖∈𝐼 𝑈𝑖. By the
De Morgan’s laws we have

𝑈 𝑐 = (∪𝑖∈𝐼 𝑈𝑖)𝑐 = ∩𝑖∈𝐼 𝑈 𝑐𝑖 .
We have two cases:

1. There exists 𝑖0 ∈ 𝐼 such that 𝑈 𝑐𝑖0 is finite. Then

𝑈 𝑐 = ∩𝑖∈𝐼𝑈 𝑐𝑖 ⊂ 𝑈 𝑐𝑖0 ,
and therefore 𝑈 𝑐 is finite, showing that 𝑈 ∈ 𝒯cofinite.

2. None of the sets 𝑈 𝑐𝑖 is finite. Therefore 𝑈 𝑐𝑖 = ℝ for all 𝑖 ∈ 𝐼 ,
from which we deduce

𝑈 𝑐 = ∩𝑖∈𝐼𝑈 𝑐𝑖 = ℝ ⟹ 𝑈 ∈ 𝒯cofinite .

In both cases, we have 𝑈 ∈ 𝒯cofinite, so that (A2) holds.
(A3) Let 𝑈 , 𝑉 ∈ 𝒯cofinite. Set 𝐴 = 𝑈 ∩ 𝑉 . Then

𝐴𝑐 = 𝑈 𝑐 ∪ 𝑉 𝑐 .
We have 2 possibilities:

1. 𝑈 𝑐 , 𝑉 𝑐 finite: Then 𝐴𝑐 is finite, and 𝐴 ∈ 𝒯cofinite.

2. 𝑈 𝑐 = ℝ or 𝑉 𝑐 = ℝ: Then 𝐴𝑐 = ℝ, and 𝐴 ∈ 𝒯cofinite.

In all cases, we have shown that 𝐴 ∈ 𝒯cofinite, so that (A3) holds.
Part 2. Let 𝑈 ∈ 𝒯cofinite. We have two cases:

• 𝑈 𝑐 is finite. Then 𝑈 𝑐 = {𝑥1, … , 𝑥𝑛} for some points 𝑥𝑖 ∈ ℝ. Up
to relabeling the points, we can assume that 𝑥𝑖 < 𝑥𝑗 when 𝑖 < 𝑗.
Therefore,

𝑈 = {𝑥1, … , 𝑥𝑛}𝑐 =
𝑛
⋃
𝑖=0

(𝑥𝑖, 𝑥𝑖+1) , 𝑥0 ∶= −∞, 𝑥𝑛+1 ∶= ∞ .

The sets (𝑥𝑖, 𝑥𝑖+1) are open in 𝒯euclid, and therefore 𝑈 ∈ 𝒯euclid.

• 𝑈 𝑐 = ℝ. Then 𝑈 = ∅, which belongs to 𝒯euclid by (A1).

In both cases, 𝑈 ∈ 𝒯euclid. Therefore 𝒯cofinite ⊆ 𝒯euclid.
Part 3. consider the interval 𝑈 = (0, 1). Then 𝑈 ∈ 𝒯euclid. However
𝑈 𝑐 is neither ℝ, nor finite. Thus 𝑈 ∉ 𝒯cofinite.

2.1 Sequences

Definition 2.11: Convergent sequence

Let (𝑋 , 𝒯 ) be a topological space. Consider a sequence {𝑥𝑛} ⊆ 𝑋
and a point 𝑥 ∈ 𝑋 . We say that 𝑥𝑛 converges to 𝑥0 in the topology

𝒯 , if the following property holds:

∀ 𝑈 ∈ 𝒯 s.t. 𝑥0 ∈ 𝑈 , ∃ 𝑁 = 𝑁(𝑈 ) ∈ ℕ s.t.

𝑥𝑛 ∈ 𝑈 , ∀ 𝑛 ≥ 𝑁 . (2.2)

The convergence of 𝑥𝑛 to 𝑥0 is denoted by 𝑥𝑛 → 𝑥0.

Proposition 2.12: Convergent sequences in 𝒯trivial

Let 𝑋 be equipped with 𝒯trivial. Let {𝑥𝑛} ⊆ 𝑋 , 𝑥0 ∈ 𝑋 . Then 𝑥𝑛 → 𝑥0.

Proof

To show that 𝑥𝑛 → 𝑥0 we need to check that (2.2) holds. Let 𝑈 ∈
𝒯trivial with 𝑥0 ∈ 𝑈 . We have two cases:

• 𝑈 = ∅: There is nothing to prove, since 𝑥0 cannot be in 𝑈 .

• 𝑈 = 𝑋 : Take 𝑁 = 1. Since 𝑈 = 𝑋 , we have 𝑥𝑛 ∈ 𝑈 for all 𝑛 ≥ 1.
Thus (2.2) holds for all the sets 𝑈 ∈ 𝒯trivial, showing that 𝑥𝑛 → 𝑥0.

Warning

Proposition 2.12 shows the topological limit may not be unique!

Proposition 2.13: Convergent sequences in 𝒯discrete

Let 𝑋 be equipped with 𝒯discrete. Let {𝑥𝑛} ⊆ 𝑋 , 𝑥0 ∈ 𝑋 . They are
equivalent:

1. 𝑥𝑛 → 𝑥0 in the topology 𝒯discrete.
2. {𝑥𝑛} is eventually constant: ∃ 𝑁 ∈ ℕ s.t. 𝑥𝑛 = 𝑥0, ∀ 𝑛 ≥ 𝑁

Proof

Part 1. Assume that 𝑥𝑛 → 𝑥0. Let 𝑈 = {𝑥0}. Then 𝑈 ∈ 𝒯discrete. Since
𝑥𝑛 → 𝑥0, by (2.2) there exists 𝑁 ∈ ℕ such that

𝑥𝑛 ∈ 𝑈 , ∀ 𝑛 ≥ 𝑁 .
As 𝑈 = {𝑥0}, we infer 𝑥𝑛 = 𝑥0 for all 𝑛 ≥ 𝑁 . Hence 𝑥𝑛 is eventually
constant.
Part 2. Assume that 𝑥𝑛 is eventually equal to 𝑥0, that is, there exists
𝑁 ∈ ℕ such that

𝑥𝑛 = 𝑥0 , ∀ 𝑛 ≥ 𝑁 . (2.3)

Let 𝑈 ∈ 𝒯 be an open set such that 𝑥0 ∈ 𝑈 . By (2.3) we have that

𝑥𝑛 ∈ 𝑈 , ∀ 𝑛 ≥ 𝑁 .
Since 𝑈 was arbitrary, we conclude that 𝑥𝑛 → 𝑥0.

Definition 2.14: Classical convergence in ℝ𝑛

Let {x𝑛} ⊆ ℝ𝑛 and x0 ∈ ℝ𝑛 . We say that x𝑛 converges x0 in the
classical sense if ‖x𝑛 − x0‖ → 0, that is,

∀ 𝜀 > 0, ∃ 𝑁 ∈ ℕ, s.t. ‖x𝑛 − x0‖ < 𝜀 , ∀ 𝑛 ≥ 𝑁 .

12



Proposition 2.15: Convergent sequences in 𝒯euclid

Let ℝ𝑛 be equipped with 𝒯euclid. Let {𝑥𝑛} ⊆ ℝ𝑛 , 𝑥0 ∈ ℝ𝑛 . They are
equivalent:

1. x𝑛 → x0 in the topology 𝒯euclid.
2. x𝑛 → x0 in the classical sense.

2.2 Metric spaces

Definition 2.16: Distance and Metric space

Let 𝑋 be a set. A distance on 𝑋 is a function 𝑑 ∶ 𝑋 × 𝑋 → ℝ such
that, for all 𝑥, 𝑦 , 𝑧 ∈ 𝑋 they hold:

• (M1) Positivity: 𝑑(𝑥, 𝑦) ≥ 0 and 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦
• (M2) Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
• (M3) Triangle Inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

The pair (𝑋 , 𝑑) is called a metric space.

Definition 2.17: Euclidean distance on ℝ𝑛

The Euclidean distance over ℝ𝑛 is defined by

𝑑(x,y) ∶= ‖x − y‖ = (
𝑛
∑
𝑖=1

|𝑥𝑖 − 𝑦𝑖|2)
1/2

, ∀x,y ∈ ℝ𝑛 .

Proposition 2.18

Let 𝑑 be the Euclidean distance on ℝ𝑛 . Then (ℝ𝑛 , 𝑑) is a metric space.

Definition 2.19: Topology induced by the metric

Let (𝑋 , 𝑑) be a metric space. The set 𝐴 ⊆ 𝑋 is open if it holds

∀ 𝑥 ∈ 𝑈 , ∃ 𝑟 ∈ ℝ, 𝑟 > 0 s.t. 𝐵𝑟 (𝑥) ⊆ 𝑈 ,
where 𝐵𝑟 (𝑥) is the ball centered at 𝑥 of radius 𝑟 , defined by

𝐵𝑟 (𝑥) = {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) < 𝑟} .
The topology induced by the metric 𝑑 is the collection of sets

𝒯𝑑 = {𝑈 ∶ 𝑈 ⊆ 𝑋 , 𝑈 open} .

Remark 2.20: Topology induced by Euclidean distance

Consider the metric space (ℝ𝑛 , 𝑑) with 𝑑 the Euclidean distance.
Then

𝒯𝑑 = 𝒯euclid ,
where 𝒯euclid is the Euclidean topology on ℝ𝑛 .

Example 2.21: Discrete distance

Question. Let 𝑋 be a set. The discrete distance is the function

𝑑 ∶ 𝑋 × 𝑋 → ℝ defined by

𝑑(𝑥, 𝑦) ∶= {0 if 𝑥 = 𝑦
1 if 𝑥 ≠ 𝑦

1. Prove that (𝑋 , 𝑑) is a metric space.
2. Prove that 𝒯𝑑 = 𝒯discrete.

Solution. See Question 3 in Homework 3.

Proposition 2.22: Convergence in metric space

Suppose (𝑋 , 𝑑) is a metric space and 𝒯𝑑 the topology induced by 𝑑 .
Let {𝑥𝑛} ⊆ 𝑋 and 𝑥0 ∈ 𝑋 . They are equivalent:

1. 𝑥𝑛 → 𝑥0 with respect to the topology 𝒯𝑑 .
2. 𝑑(𝑥𝑛 , 𝑥0) → 0 in ℝ.
3. For all 𝜀 > 0 there exists 𝑁 ∈ ℕ such that

𝑥𝑛 ∈ 𝐵𝑟 (𝑥0) , ∀ 𝑛 ≥ ℕ .

2.3 Hausdorff spaces

Definition 2.23: Hausdorff space

We say that a topological space (𝑋 , 𝒯 ) is Hausdorff if for every
𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 , there exist 𝑈 , 𝑉 ∈ 𝒯 such that

𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 , 𝑈 ∩ 𝑉 = ∅ .

Proposition 2.24

Let (𝑋 , 𝑑) be a metric space, 𝒯𝑑 the topology induced by 𝑑 . Then
(𝑋 , 𝒯𝑑 ) is a Hausdorff space.

Proof

Let 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 . Define

𝑈 ∶= 𝐵𝜀(𝑥) , 𝑉 ∶= 𝐵𝜀(𝑦) , 𝜀 ∶= 1
2 𝑑(𝑥, 𝑦) .

By Proposition 2.24, we know that 𝑈 , 𝑉 ∈ 𝒯𝑑 . Moreover 𝑥 ∈ 𝑈 ,
𝑦 ∈ 𝑉 . We are left to show that 𝑈 ∩𝑉 = ∅. Suppose by contradiction
that 𝑈 ∩ 𝑉 ≠ ∅ and let 𝑧 ∈ 𝑈 ∩ 𝑉 . Therefore

𝑑(𝑥, 𝑧) < 𝜀 , 𝑑(𝑦 , 𝑧) < 𝜀 .
By triangle inequality we have

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) < 𝜀 + 𝜀 = 𝑑(𝑥, 𝑦) ,
where in the last inequality we used the definition of 𝜀. This is a
contradiction. Therefore 𝑈 ∩ 𝑉 = ∅ and (𝑋 , 𝒯𝑑 ) is Hausdorff.

Definition 2.25: Metrizable space

Let (𝑋 , 𝒯 ) be a topological space. We say that the topology 𝒯 is
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metrizable if there exists a metric 𝑑 on 𝑋 such that

𝒯 = 𝒯𝑑 ,
with 𝒯𝑑 the topology induced by 𝑑 .

Corollary 2.26

Let (𝑋 , 𝒯 ) be a metrizable space. Then 𝑋 is Hausforff.

Example 2.27: (𝑋 , 𝒯trivial) is not Hausdorff

Question. Let 𝑋 be equipped with the trivial topology 𝒯trivial.
Then 𝑋 is not Hausdorff.
Solution. Assume by contradiction (𝑋 , 𝒯trivial) is Hausdorff and let
𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 . Then, there exist 𝑈 , 𝑉 ∈ 𝒯trivial such that

𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 , 𝑈 ∩ 𝑉 = ∅ .
In particular 𝑈 ≠ ∅ and 𝑉 ≠ ∅. Since 𝒯 = {∅, 𝑋}, we conclude that

𝑈 = 𝑉 = 𝑋 ⟹ 𝑈 ∩ 𝑉 = 𝑋 ≠ ∅ .
This is a contradiction, and thus (𝑋 , 𝒯trivial) is not Hausdorff.

Example 2.28: (ℝ, 𝒯cofinite) is not Hausdorff

Question. Consider the cofinite topology on ℝ
𝒯cofinite = {𝑈 ⊆ ℝ ∶ 𝑈 𝑐 is finite, or 𝑈 𝑐 = ℝ} .

Prove that (ℝ, 𝒯cofinite) is not Hausdorff.
Solution. Assume by contradiction (ℝ, 𝒯cofinite) is Hausdorff and
let 𝑥, 𝑦 ∈ ℝ with 𝑥 ≠ 𝑦 . Then, there exist 𝑈 , 𝑉 ∈ 𝒯cofinite such that

𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 , 𝑈 ∩ 𝑉 = ∅ .
Taking the complement of 𝑈 ∩ 𝑉 = ∅, we infer

ℝ = (𝑈 ∩ 𝑉 )𝑐 = 𝑈 𝑐 ∪ 𝑉 𝑐 . (2.4)

There are two possibilities:

1. 𝑈 𝑐 and 𝑉 𝑐 are finite. Then 𝑈 𝑐 ∪ 𝑉 𝑐 is finite, so that (2.4) is a
contradiction.

2. Either 𝑈 𝑐 = ℝ or 𝑈 𝑐 = ℝ. If 𝑈 𝑐 = ℝ, then 𝑈 = ∅. This is a
contradiction, since 𝑥 ∈ 𝑈 . If 𝑉 𝑐 = ℝ, then 𝑉 = ∅. This is a
contradiction, since 𝑦 ∈ 𝑉 .

Hence (ℝ, 𝒯cofinite) is not Hausdorff.

Example 2.29: Lower-limit topology on ℝ is not Hausdorff

Question. The lower-limit topology on ℝ is the collection of sets

𝒯LL = {∅, ℝ} ∪ {(𝑎, +∞) ∶ 𝑎 ∈ ℝ} .
1. Prove that (ℝ, 𝒯LL) is a topological space.
2. Prove that (ℝ, 𝒯LL) is not Hausdorff.

Solution. Part 1. We show that (ℝ, 𝒯LL) is a topological space by
verifying the axioms:

(A1) By definition ∅, ℝ ∈ 𝒯LL.
(A2) Let 𝐴𝑖 ∈ 𝒯LL for all 𝑖 ∈ 𝐼 . We have 2 cases:

• If 𝐴𝑖 = ∅ for all 𝑖, then ∪𝑖𝐴𝑖 = ∅ ∈ 𝒯LL.

• At least one of the sets 𝐴𝑖 is non-empty. As empty-sets do
not contribute to the union, we can discard them. Therefore,
𝐴𝑖 = (−∞, 𝑎𝑖) with 𝑎𝑖 ∈ ℝ ∪ {∞}. Define:

𝑎 ∶= sup
𝑖∈𝐼

𝑎𝑖, 𝐴 ∶= (−∞, 𝑎).

Then 𝐴 ∈ 𝒯 and:
𝐴 = ∪𝑖∈𝐼𝐴𝑖.

To prove this, let 𝑥 ∈ 𝐴. Then 𝑥 < 𝑎, so there exists 𝑖0 ∈ 𝐼 such
that 𝑥 < 𝑎𝑖0 . Thus, 𝑥 ∈ 𝐴𝑖0 , showing 𝐴 ⊆ ∪𝑖∈𝐼𝐴𝑖. Conversely, if
𝑥 ∈ ∪𝑖∈𝐼𝐴𝑖, then 𝑥 ∈ 𝐴𝑖0 for some 𝑖0 ∈ 𝐼 , implying 𝑥 < 𝑎𝑖0 ≤ 𝑎.
Thus, 𝑥 ∈ 𝐴, proving ∪𝑖∈𝐼𝐴𝑖 ⊆ 𝐴.

(A3) Let 𝐴, 𝐵 ∈ 𝒯LL. We have 3 cases:

• 𝐴 = ∅ or 𝐵 = ∅. Then 𝐴 ∩ 𝐵 = ∅ ∈ 𝒯LL.

• 𝐴 ≠ ∅ and 𝐵 ≠ ∅. Therefore, 𝐴 = (−∞, 𝑎) and 𝐵 = (−∞, 𝑏)
with 𝑎, 𝑏 ∈ ℝ ∪ {∞}. Define

𝑈 ∶= 𝐴 ∩ 𝐵, 𝑧 ∶= min{𝑎, 𝑏}.
Then 𝑈 = (−∞, 𝑧) ∈ 𝒯LL.

Thus, (ℝ, 𝒯LL) is a topological space.
Part 2. To show (ℝ, 𝒯LL) is not Hausdorff, assume otherwise. Let
𝑥, 𝑦 ∈ ℝ with 𝑥 ≠ 𝑦 . Then there exist 𝑈 , 𝑉 ∈ 𝒯LL such that:

𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 , 𝑈 ∩ 𝑉 = ∅.
As 𝑈 , 𝑉 are non-empty, by definition of𝒯LL, there exist 𝑎, 𝑏 ∈ ℝ∪{∞}
such that 𝑈 = (−∞, 𝑎) and 𝑉 = (−∞, 𝑏). Define:

𝑧 ∶= min{𝑎, 𝑏}, 𝑍 ∶= 𝑈 ∩ 𝑉 = (−∞, 𝑧).
Hence 𝑍 ≠ ∅, contradicting 𝑈 ∩ 𝑉 = ∅. Thus, (ℝ, 𝒯LL) is not Haus-
dorff.

Proposition 2.30: Uniqueness of limit in Hausdorff spaces

Let (𝑋 , 𝒯 ) be a Hausdorff space. If a sequence {𝑥𝑛} ⊆ 𝑋 converges,
then the limit is unique.

2.4 Continuity
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Definition 2.31: Images and Pre-images

Let 𝑋, 𝑌 be sets and 𝑓 ∶ 𝑋 → 𝑌 be a function.

1. Let 𝑈 ⊆ 𝑋 . The image of 𝑈 under 𝑓 is the subset of 𝑌 defined
by

𝑓 (𝑈 ) ∶= {𝑦 ∈ 𝑌 ∶ ∃ 𝑥 ∈ 𝑋 s.t. 𝑦 = 𝑓 (𝑥)} = {𝑓 (𝑥) ∶ 𝑥 ∈ 𝑋} .
2. Let 𝑉 ⊆ 𝑌 . The pre-image of 𝑉 under 𝑓 is the subset of 𝑋

defined by

𝑓 −1(𝑉 ) ∶= {𝑥 ∈ 𝑋 ∶ 𝑓 (𝑥) ∈ 𝑉 } .

Warning

The notation 𝑓 −1(𝑉 ) does not mean that we are inverting 𝑓 . In fact,
the pre-image is defined for all functions.

Definition 2.32: Continuous function

Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be topological spaces. Let 𝑓 ∶ 𝑋 → 𝑌 be a
function.

1. Let 𝑥0 ∈ 𝑋 . We say that 𝑓 is continuous at 𝑥0 if it holds:

∀ 𝑉 ∈ 𝒯𝑌 s.t. 𝑓 (𝑥0) ∈ 𝑉 , ∃ 𝑈 ∈ 𝒯𝑋 s.t. 𝑥0 ∈ 𝑈 , 𝑓 (𝑈 ) ⊆ 𝑉 .

2. We say that 𝑓 is continuous from (𝑋 , 𝒯𝑋 ) to (𝑌 , 𝒯𝑌 ) if 𝑓 is
continuous at each point 𝑥0 ∈ 𝑋 .

Proposition 2.33

Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be topological spaces. Let 𝑓 ∶ 𝑋 → 𝑌 be a
function. They are equivalent:

1. 𝑓 is continuous from (𝑋 , 𝒯𝑋 ) to (𝑌 , 𝒯𝑌 ).
2. It holds: 𝑓 −1(𝑉 ) ∈ 𝒯𝑋 for all 𝑉 ∈ 𝒯𝑌 .

Example 2.34

Question. Let 𝑋 be a set and 𝒯1, 𝒯2 be topologies on 𝑋 . Define
the identity map

Id𝑋 ∶ (𝑋 , 𝒯1) → (𝑋 , 𝒯2) , Id𝑋 (𝑥) ∶= 𝑥 .
Prove that they are equivalent:

1. Id𝑋 is continuous from (𝑋 , 𝒯1) to (𝑋 , 𝒯2).
2. 𝒯1 is finer than 𝒯2, that is, 𝒯2 ⊆ 𝒯1.

Solution. Id𝑋 is continuous if and only if

Id−1𝑋 (𝑉 ) ∈ 𝒯1 , ∀ 𝑉 ∈ 𝒯2 .

But Id−1𝑋 (𝑉 ) = 𝑉 , so that the above reads

𝑉 ∈ 𝒯1 , ∀ 𝑉 ∈ 𝒯2 ,
which is equivalent to 𝒯2 ⊆ 𝒯1.

Definition 2.35: Continuity in the classical sense

Let 𝑓 ∶ ⊆ ℝ𝑛 → ℝ𝑚 . We say that 𝑓 is continuous at x0 if it holds:

∀ 𝜀 > 0 , ∃ 𝛿 > 0 s.t. ‖𝑓 (x) − 𝑓 (x0)‖ < 𝜀 if ‖x − x0‖ < 𝛿 .

Proposition 2.36

Let 𝑓 ∶ ℝ𝑛 → ℝ𝑚 and suppose ℝ𝑛 , ℝ𝑚 are equipped with the Eu-
clidean topology. Let x0 ∈ ℝ𝑛 . They are equivalent:

1. 𝑓 is continuous at x0 in the topological sense.
2. 𝑓 is continuous at x0 in the classical sense.

Proposition 2.37

Let (𝑋 , 𝑑𝑋 ) and (𝑌 , 𝑑𝑌 ) be metric spaces. Denote by 𝒯𝑋 and 𝒯𝑌 the
topologies induced by the metrics. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑥0 ∈ 𝑋 . They
are equivalent:

1. 𝑓 is continuous at 𝑥0 in the topological sense.
2. It holds:

∀ 𝜀 > 0 , ∃ 𝛿 > 0 s.t.

𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑥0)) < 𝜀 if 𝑑𝑋 (𝑥, 𝑥0) < 𝛿 .

Example 2.38

Question. Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be a topological space. Suppose
that 𝒯𝑌 is the trivial topology, that is,

𝒯𝑌 = {∅, 𝑌 } .
Prove that every function 𝑓 ∶ 𝑋 → 𝑌 is continuous.
Solution. 𝑓 is continuous if 𝑓 −1(𝑉 ) ∈ 𝒯𝑋 for all 𝑉 ∈ 𝒯𝑌 . We have
two cases:

• 𝑉 = ∅: Then 𝑓 −1(𝑉 ) = 𝑓 −1(∅) = ∅ ∈ 𝒯𝑋 .

• 𝑉 = 𝑌 : Then 𝑓 −1(𝑉 ) = 𝑓 −1(𝑌 ) = 𝑋 ∈ 𝒯𝑋 .

Therefore 𝑓 is continuous.

Example 2.39

Question. Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be topological spaces. Suppose
that 𝒯𝑌 is the discrete topology, that is,

𝒯𝑌 = {𝑉 s.t. 𝑉 ⊆ 𝑌 } .
Let 𝑓 ∶ 𝑋 → 𝑌 . Prove that they are equivalent:

1. 𝑓 is continuous from 𝑋 to 𝑌 .
2. 𝑓 −1({𝑦}) ∈ 𝒯𝑋 for all 𝑦 ∈ 𝑌 .

Solution. Suppose that 𝑓 is continuous. Then

𝑓 −1(𝑉 ) ∈ 𝒯𝑋 , ∀ 𝑉 ∈ 𝒯𝑌 .
As 𝑉 = {𝑦} ∈ 𝒯𝑌 , we conclude that 𝑓 −1({𝑦}) ∈ 𝒯𝑋 .
Conversely, assume that 𝑓 −1({𝑦}) ∈ 𝒯𝑋 for all 𝑦 ∈ 𝑌 . Let 𝑉 ∈ 𝒯𝑌 .
Trivially, we have 𝑉 = ∪𝑦∈𝑉 {𝑦}. Therefore

𝑓 −1(𝑉 ) = 𝑓 −1 (⋃
𝑦∈𝑉

{𝑦}) = ⋃
𝑦∈𝑉

𝑓 −1({𝑦}) .
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As 𝑓 −1({𝑦}) ∈ 𝒯𝑋 for all 𝑦 ∈ 𝑌 , by property (A2) we conclude that
𝑓 −1(𝑉 ) ∈ 𝒯𝑋 . Therefore 𝑓 is continuous.

Proposition 2.40: Continuity of compositions

Let (𝑋 , 𝒯𝑋 ), (𝑌 , 𝒯𝑌 ), (𝑍 , 𝒯𝑍 ) be topological spaces. Assume
𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are continuous. Then (𝑔 ∘ 𝑓 )∶ 𝑋 → 𝑍 is
continuous.

Definition 2.41: Homeomorphism

Let (𝑋 , 𝒯𝑋 ), (𝑌 , 𝒯𝑌 ) be topological space. A function 𝑓 ∶ 𝑋 → 𝑌 is
called an homeomorphism if they hold:

1. 𝑓 is continuous.
2. 𝑓 admits continuous inverse 𝑓 −1 ∶ 𝑌 → 𝑋 .

2.5 Subspace topology

Definition 2.42: Subspace topology

Let (𝑋 , 𝒯 ) be a topological space and 𝑌 ⊆ 𝑋 a subset. Define the
family of sets

𝒮 ∶= {𝐴 ⊆ 𝑌 ∶ ∃ 𝑈 ∈ 𝒯 s.t. 𝐴 = 𝑈 ∩ 𝑌 }
= {𝑈 ∩ 𝑌 , 𝑈 ∈ 𝒯 } .

The family 𝒮 is the subspace topology on 𝑌 induced by the inclu-
sion 𝑌 ⊆ 𝑋 .

Proposition 2.43

Let (𝑋 , 𝒯 ) be a topological space and 𝑌 ∈ 𝒯 . Let
𝐴 ⊆ 𝑌 . Then

𝐴 ∈ 𝒮 ⟺ 𝐴 ∈ 𝒯 .

Warning

Let (𝑋 , 𝒯 ) be a topological space, 𝐴 ⊆ 𝑌 ⊆ 𝑋 . In general we could
have

𝐴 ∈ 𝒮 and 𝐴 ∉ 𝒯 .
Example. Let 𝑋 = ℝ with 𝒯euclid. Consider the subset 𝑌 = [0, 2),
and equip 𝑌 with the subspace topology 𝒮 . Let 𝐴 = [0, 1). Then
𝐴 ∉ 𝒯euclid but 𝐴 ∈ 𝒮 , since

𝐴 = (−1, 1) ∩ 𝑌 , (−1, 1) ∈ 𝒯euclid .

Example 2.44

Question. Let 𝑋 = ℝ be equipped with 𝒯euclid. Let 𝒮 be the sub-
space topology on ℤ. Prove that

𝒮 = 𝒯discrete .
Solution. To prove that 𝒮 = 𝒯discrete, we need to show that all the
subsets of ℤ are open in 𝒮 .

1. Let 𝑧 ∈ ℤ be arbitrary. Notice that

{𝑧} = (𝑧 − 1, 𝑧 + 1) ∩ ℤ
and (𝑧 − 1, 𝑧 + 1) ∈ 𝒯euclid. Thus {𝑧} ∈ 𝒮 .

2. Let now 𝐴 ⊆ ℤ be an arbitrary subset. Trivially,

𝐴 = ∪𝑧∈𝐴 {𝑧} .
As {𝑧} ∈ 𝒮 , we infer that 𝐴 ∈ 𝒮 by (A2).

2.6 Connectedness

Definition 2.45: Connected space

Let (𝑋 , 𝒯 ) be a topological space. We say that:

1. 𝑋 is connected if the only subsets of 𝑋 which are both open
and closed are ∅ and 𝑋 .

2. 𝑋 is disconnected if it is not connected.

Definition 2.46: Proper subset

Let 𝑋 be a set. A subset 𝐴 ⊆ 𝑋 is proper if 𝐴 ≠ ∅ and 𝐴 ≠ 𝑋 .

Proposition 2.47: Equivalent definition for connectedness

Let (𝑋 , 𝒯 ) be a topological space. They are equivalent:

1. 𝑋 is disconnected.
2. 𝑋 is the disjoint union of two proper open subsets.
3. 𝑋 is the disjoint union of two proper closed subsets.

Example 2.48

Question. Consider the set 𝑋 = {0, 1} with the subspace topology
induced by the inclusion 𝑋 ⊆ ℝ, where ℝ is equipped with the Eu-
clidean topology 𝒯euclid. Prove that 𝑋 is disconnected.
Solution. Note that

𝑋 = {0} ∪ {1} , {0} ∩ {1} = ∅ .
The set {0} is open for the subspace topology, since

{0} = 𝑋 ∩ (−1, 1) , (−1, 1) ∈ 𝒯euclid .
Similarly, also {1} is open for the subspace topology, since

{1} = 𝑋 ∩ (0, 2) , (0, 2) ∈ 𝒯euclid .
Since {0} and {1} are proper subsets of 𝑋 , we conclude that 𝑋 is
disconnected.

Example 2.49

Question. Let ℝ be equipped with𝒯euclid, and let 𝑝 ∈ ℝ. Prove that
the set 𝑋 = ℝ ∖ {𝑝} is disconnected.
Solution. Define the sets

𝐴 = (−∞, 𝑝) , 𝐵 = (𝑝,∞) .
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𝐴 and 𝐵 are proper subsets of 𝑋 . Moreover

𝑋 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅ .
Finally,𝐴, 𝐵 are open for the subspace topology on 𝑋 , since they are
open in (ℝ, 𝒯euclid). Therefore 𝑋 is disconnected.

Theorem 2.50

Let (𝑋 , 𝒯𝑋 ), (𝑌 , 𝒯𝑌 ) be topological spaces. Suppose that 𝑓 ∶ 𝑋 →
𝑌 is continuous and let 𝑓 (𝑋) ⊆ 𝑌 be equipped with the subspace
topology. If 𝑋 is connected, then 𝑓 (𝑋) is connected.

Theorem 2.51: Connectedness is topological invariant

Let (𝑋 , 𝒯𝑋 ), (𝑌 , 𝒯𝑌 ) be homeomorhic topological spaces. Then

𝑋 is connected ⟺ 𝑌 is connected

Example 2.52

Question. Define the one dimensional unit circle

𝕊1 ∶= {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥2 + 𝑦2 = 1} .
Prove that 𝕊1 and [0, 1] are not homeomorphic.
Solution. Suppose by contradiction that there exists a homeomor-
phism

𝑓 ∶ [0, 1] → 𝕊1 .
The restriction of 𝑓 to [0, 1] ∖ { 12 } defines a homeomorphism

𝑔 ∶ ([0, 1] ∖ {12}) → (𝕊1 ∖ {p}) , p ∶= 𝑓 (12) .

The set [0, 1] ∖ { 12 } is disconnected, since

[0, 1] ∖ {1/2} = [0, 1/2) ∪ (1/2, 1]
with [0, 1/2) and (1/2, 1] open for the subset topology, non-empty
and disjoint. Therefore, using that 𝑔 is a homeomorphism, we con-
clude that also 𝕊1∖{p} is disconnected. Let 𝜃0 ∈ [0, 2𝜋) be the unique
angle such that

p = (cos(𝜃0), sin(𝜃0)) .
Thus 𝕊1 ∖ {p} is parametrized by

𝛾𝛾𝛾 (𝑡) ∶= (cos(𝑡), sin(𝑡)) , 𝑡 ∈ (𝜃0, 𝜃0 + 2𝜋) .
Since 𝛾𝛾𝛾 is continuous and (𝜃0, 𝜃0 + 2𝜋) is connected, by Theorem
2.50, we conclude that 𝕊1 ∖ {p} is connected. Contradiction.

Definition 2.53: Interval

A subset 𝐼 ⊂ ℝ is an interval if it holds:

∀ 𝑎, 𝑏 ∈ 𝐼 , 𝑥 ∈ ℝ s.t. 𝑎 < 𝑥 < 𝑏 ⟹ 𝑥 ∈ 𝐼 .

Theorem 2.54: Intervals are connected

Let ℝ be equipped with the Euclidean topology and let 𝐼 ⊆ ℝ. They
are equivalent:

1. 𝐼 is connected.
2. 𝐼 is an interval.

Theorem 2.55: Intermediate Value Theorem

Let (𝑋 , 𝒯 ) be a connected topological space. Suppose that 𝑓 ∶ 𝑋 →
ℝ is continuous. Suppose that 𝑎, 𝑏 ∈ 𝑋 are such that 𝑓 (𝑎) < 𝑓 (𝑏). It
holds:

∀ 𝑐 ∈ ℝ s.t. 𝑓 (𝑎) < 𝑐 < 𝑓 (𝑏) , ∃ 𝜉 ∈ 𝑋 s.t. 𝑓 (𝜉 ) = 𝑐 .

Example 2.56: Intervals are connected - Alternative proof

Question. Prove the following statements.

1. Let (𝑋 , 𝒯 ) be a disconnected topological space. Prove that
there exists a function 𝑓 ∶ 𝑋 → {0, 1} which is continuous and
surjective.

2. Consider ℝ equipped with the Euclidean topology. Let 𝐼 ⊆ ℝ be
an interval. Use point (1), and the Intermediate Value Theorem
in ℝ (see statement below), to show that 𝐼 is connected.

Intermediate Value Theorem in ℝ: Suppose that 𝑓 ∶ [𝑎, 𝑏] → ℝ is
continuous, and 𝑓 (𝑎) < 𝑓 (𝑏). Let 𝑐 ∈ ℝ be such that 𝑓 (𝑎) ≤ 𝑐 ≤ 𝑓 (𝑏).
Then, there exists 𝜉 ∈ [𝑎, 𝑏] such that 𝑓 (𝜉 ) = 𝑐.
Solution. Part 1. Since 𝑋 is disconnected, there exist 𝐴, 𝐵 ∈ 𝒯
proper and such that

𝑋 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅ .
Define 𝑓 ∶ 𝑋 → {0, 1} by

𝑓 (𝑥) = {0 if 𝑥 ∈ 𝐴
1 if 𝑥 ∈ 𝐵

Since 𝐴 and 𝐵 are non-empty, it follows that 𝑓 is surjective. More-
over 𝑓 is continuous: Indeed suppose 𝑈 ⊆ ℝ is open. We have 4
cases:

• 0, 1 ∉ 𝑈 . Then 𝑓 −1(𝑈 ) = ∅ ∈ 𝒯 .
• 0 ∈ 𝑈 , 1 ∉ 𝑈 . Then 𝑓 −1(𝑈 ) = 𝐴 ∈ 𝒯 .
• 0 ∉ 𝑈 , 1 ∈ 𝑈 . Then 𝑓 −1(𝑈 ) = 𝐵 ∈ 𝒯 .
• 0, 1 ∈ 𝑈 . Then 𝑓 −1(𝑈 ) = 𝑋 ∈ 𝒯 .

Then 𝑓 −1(𝑈 ) ∈ 𝒯 for all 𝑈 ⊆ ℝ open, showing that 𝑓 is continuous.
Part 2. Let 𝐼 ⊆ ℝ be an interval. Suppose by contradiction 𝐼 is
disconnected. By Point (1), there exists a map 𝑓 ∶ 𝐼 → {0, 1} which
is continuous and surjective. As 𝑓 is surjective, there exist 𝑎, 𝑏 ∈ 𝐼
such that

𝑓 (𝑎) = 0 , 𝑓 (𝑏) = 1 .
Since 𝑓 is continuous, and 𝑓 (𝑎) = 0 < 1 = 𝑓 (𝑏), by the Intermediate
Value Theorem in ℝ, there exists 𝜉 ∈ [𝑎, 𝑏] such that 𝑓 (𝜉 ) = 1/2. As
𝐼 is an interval, 𝑎, 𝑏 ∈ 𝐼 , and 𝑎 ≤ 𝜉 ≤ 𝑏, it follows that 𝜉 ∈ 𝐼 . This
is a contradiction, since 𝑓 maps 𝐼 into {0, 1}, and 𝑓 (𝜉 ) = 1/2 ∉ {0, 1}.
Therefore 𝐼 is connected.
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2.7 Path-connectedness

Definition 2.57: Path-connectedness

Let (𝑋 , 𝒯 ) be a topological space. We say that𝑋 ispath-connected
if for every 𝑥, 𝑦 ∈ 𝑋 there exist 𝑎, 𝑏 ∈ ℝwith 𝑎 < 𝑏, and a continuous
function

𝛼 ∶ [𝑎, 𝑏] → 𝑋 s.t. 𝛼(𝑎) = 𝑥 , 𝛼(𝑏) = 𝑦 .

Theorem 2.58: Path-connectedness implies connectedness

Let (𝑋 , 𝒯 ) be a path-connected topological space. Then 𝑋 is con-
nected.

Example 2.59

Question. Let 𝐴 ⊆ ℝ𝑛 be convex. Show that 𝐴 is path-connected,
and hence connected.
Solution. A is convex if for all 𝑥, 𝑦 ∈ 𝐴 the segment connecting 𝑥
to 𝑦 is contained in 𝐴, namely,

[𝑥, 𝑦] ∶= {(1 − 𝑡)𝑥 + 𝑡𝑦 ∶ 𝑡 ∈ [0, 1]} ⊆ 𝐴 .
Therefore we can define

𝛼 ∶ [0, 1] → 𝐴 , 𝛼(𝑡) ∶= (1 − 𝑡)𝑥 + 𝑡𝑦 .
Clearly 𝛼 is continuous, and 𝛼(0) = 𝑥, 𝛼(1) = 𝑦 .

Example 2.60: Spaces of matrices

Let ℝ2×2 denote the space of real 2 × 2 matrices. Assume ℝ2×2 has
the euclidean topology obtained by identifying it with ℝ4.

1. Consider the set of orthogonal matrices

O(2) = {𝐴 ∈ ℝ2×2 ∶ 𝐴𝑇𝐴 = 𝐼 } .
Prove that O(2) is disconnected.

2. Consider the set of rotations

SO(2) = {𝐴 ∈ ℝ2×2 ∶ 𝐴𝑇𝐴 = 𝐼 , det(𝐴) = 1} .
Prove that SO(2) is path-connected, and hence connected.

Solution. Let 𝐴 ∈ O(2), and denote its entries by 𝑎, 𝑏, 𝑐, 𝑑 . By direct
calculation, the condition 𝐴𝑇𝐴 = 𝐼 is equivalent to

𝑎2 + 𝑏2 = 1 , 𝑏2 + 𝑐2 = 1 , 𝑎𝑐 + 𝑏𝑑 = 0 .
From the first condition, we get that 𝑎 = cos(𝑡) and 𝑏 = sin(𝑡), for
a suitable 𝑡 ∈ [0, 2𝜋). From the second and third conditions, we get
𝑐 = ± sin(𝑡) and 𝑑 = ∓ cos(𝑡). We decompose O(2) as

O(2) = 𝐴 ∪ 𝐵 ,
𝐴 = SO(2) = {( cos(𝑡) − sin(𝑡)

sin(𝑡) cos(𝑡) ) , 𝑡 ∈ [0, 2𝜋)}

𝐵 = {( cos(𝑡) sin(𝑡)
sin(𝑡) − cos(𝑡) ) , 𝑡 ∈ [0, 2𝜋)} .

1. The determinant function det∶ O(2) → ℝ is continuous. If𝑀 ∈
𝐴, we have det(𝑀) = 1. If instead𝑀 ∈ 𝐵, we have det(𝑀) = −1.
Moreover,

det−1({1}) = 𝐴 , det−1({0}) = 𝐵 .

As det is continuous, and {0}, {1} closed, we conclude that𝐴 and
𝐵 are closed. Therefore,𝐴 and 𝐵 are closed, proper and disjoint.
Since O(2) = 𝐴 ∪ 𝐵, we conclude that O(2) is disconnected.

2. Define the function 𝜓 ∶ [0, 2𝜋) → SO(2) by

𝜓(𝑡) = ( cos(𝑡) − sin(𝑡)
sin(𝑡) cos(𝑡) ) .

Clearly, 𝜓 is continuous. Let 𝑅, 𝑄 ∈ SO(2). Then 𝑅 is deter-
mined by an angle 𝑡1, while 𝑄 by an angle 𝑡2. Up to swap-
ping 𝑅 and 𝑄, we can assume 𝑡1 < 𝑡2. Define the function
𝑓 ∶ [0, 1] → SO(2) by

𝑓 (𝜆) = 𝜓(𝑡1(1 − 𝜆) + 𝑡2𝜆) .
Then, 𝑓 is continuous and

𝑓 (0) = 𝜓(𝑡1) = 𝑅, 𝑓 (1) = 𝜓(𝑡2) = 𝑄 .
Thus SO(2) is path-connected.

Warning

In general connectedness does not imply path-connectedness, as
seen in Proposition 2.92.
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3 Surfaces

Definition 3.1: Topology of ℝ𝑛

The Euclidean norm on ℝ𝑛 is denoted by

‖x‖ ∶=
√

𝑛
∑
𝑖=1

𝑥2𝑖 , x = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 .

Define the Euclidean distance 𝑑(x,y) = ‖x − y‖.
1. The pair (ℝ𝑛 , 𝑑) is a metric space.

2. The topology induced by the metric 𝑑 is called the Euclidean
topology, denoted by 𝒯 .

3. A set 𝑈 ⊆ ℝ𝑛 is open if for all x ∈ 𝑈 there exists 𝜀 > 0 such
that 𝐵𝜀(x) ⊆ 𝑈 , where

𝐵𝜀(x) ∶= {y ∈ ℝ𝑛 ∶ ‖x − y‖ < 𝜀}
is the open ball of radius 𝜀 > 0 centered at x. We write 𝑈 ∈ 𝒯 ,
with 𝒯 the Euclidean topology in ℝ𝑛 .

4. A set 𝑉 ⊆ ℝ𝑛 is closed if 𝑉 𝑐 ∶= ℝ𝑛 ∖ 𝑈 is open.

Definition 3.2: Subspace Topology

Let 𝐴 ⊆ ℝ𝑛 . The subspace topology on 𝐴 is the family

𝒯𝐴 ∶= {𝑈 ⊆ 𝐴 ∶ ∃ 𝑊 ∈ 𝒯 s.t. 𝑈 = 𝐴 ∩ 𝑊 } .
If 𝑈 ∈ 𝒯𝐴, we say that 𝑈 is open in 𝐴.

Definition 3.3: Continuous Function

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ𝑚 with 𝑈 open. We say that 𝑓 is continuous at
x ∈ 𝑈 if ∀ 𝜀 > 0, ∃ 𝛿 > 0 such that

‖x − y‖ < 𝛿 ⟹ ‖𝑓 (x) − 𝑓 (y)‖ < 𝜀 .
𝑓 is continuous in 𝑈 if it is continuous for all x ∈ 𝑈 .

Theorem 3.4: Continuity: Topological definition

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → 𝑉 ⊆ ℝ𝑚 , with 𝑈 , 𝑉 open. We have that 𝑓 is
continuous if and only if 𝑓 −1(𝐴) is open in 𝑈 , for all 𝐴 open in 𝑉 .

Definition 3.5: Homeomorphism

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → 𝑉 ⊆ ℝ𝑚 with 𝑈 , 𝑉 open. We say that 𝑓 is a
homeomorphism if:

1. 𝑓 is continuous;
2. 𝑓 admits continuous inverse 𝑓 −1 ∶ 𝑉 → 𝑈 .

Definition 3.6: Differentiable Function

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ𝑚 with 𝑈 open. We say that 𝑓 is differentiable
at x ∈ 𝑈 if there exists a linear map 𝑑x𝑓 ∶ ℝ𝑛 → ℝ𝑚 such that

𝑑x𝑓 (h) = lim𝜀→0
𝑓 (x + 𝜀h) − 𝑓 (x)

𝜀 ,

for all h ∈ ℝ𝑛 , where the limit is taken in ℝ𝑚 . The linear map 𝑑x𝑓 is
called the differential of 𝑓 at x.

Definition 3.7: Partial Derivative

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ𝑚 , 𝑈 open, 𝑓 differentiable. The partial deriva-
tive of 𝑓 at x ∈ 𝑈 in direction e𝑖 is

𝜕𝑓
𝜕𝑥𝑖

(x) ∶= 𝑑x𝑓 (e𝑖) = lim𝜀→0
𝑓 (x + 𝜀e𝑖) − 𝑓 (x)

𝜀 .

Definition 3.8: Jacobian Matrix

Let 𝑓 ∶ 𝑈 ⊂ ℝ𝑛 → ℝ𝑚 be differentiable. The Jacobian of 𝑓 at x is
the 𝑚 × 𝑛 matrix of partial derivatives:

𝐽 𝑓 (x) ∶= ( 𝜕𝑓𝑖𝜕𝑥𝑗
(x))

𝑖,𝑗
∈ ℝ𝑚×𝑛 .

If 𝑚 = 𝑛 then 𝐽𝑓 ∈ ℝ𝑛×𝑛 is a square matrix and we can compute its
determinant, denoted by det(𝐽 𝑓 ).

Proposition 3.9: Matrix representation of 𝑑x𝑓

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ𝑚 be differentiable. The matrix of the linear
map 𝑑x𝑓 ∶ ℝ𝑛 → ℝ𝑚 with respect to the standard basis is given by
the Jacobian matrix 𝐽 𝑓 (x).

Definition 3.10: Diffeomorphism

Let 𝑓 ∶ 𝑈 → 𝑉 , with 𝑈 , 𝑉 ⊆ ℝ𝑛 open. We say that 𝑓 is a diffeomor-
phism between 𝑈 and 𝑉 if:

1. 𝑓 is smooth,
2. 𝑓 admits smooth inverse 𝑓 −1 ∶ 𝑉 → 𝑈 .

Definition 3.11: Local diffeomorphism

𝑓 ∶ ℝ𝑛 → ℝ𝑛 is a local diffeomorphism at x0 ∈ ℝ𝑛 if:

1. There exists an open set 𝑈 ⊆ ℝ𝑛 such that x0 ∈ 𝑈 ,
2. There exists an open set 𝑉 ⊆ ℝ𝑛 such that 𝑓 (x0) ∈ 𝑉 ,
3. 𝑓 ∶ 𝑈 → 𝑉 is a diffeomorphism.
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Proposition 3.12

Diffeomorphisms are local diffeomorphisms.

Proposition 3.13: Necessary condition for being diffeomorphism

Let 𝑓 ∶ 𝑈 → ℝ𝑛 with 𝑈 ⊆ ℝ𝑛 open. Suppose 𝑓 is a local diffeo-
morhism at x0 ∈ 𝑈 . Then det 𝐽 𝑓 (x0) ≠ 0.

Theorem 3.14: Inverse Function Theorem

Let 𝑓 ∶ 𝑈 → ℝ𝑛 with 𝑈 ⊆ ℝ𝑛 open, 𝑓 smooth. Assume

det 𝐽 𝑓 (x0) ≠ 0 ,
for some x0 ∈ 𝑈 . Then:

1. There exists an open set 𝑈0 ⊆ 𝑈 such that x0 ∈ 𝑈0,
2. There exists an open set 𝑉 such that 𝑓 (x0) ∈ 𝑉 ,
3. 𝑓 ∶ 𝑈0 → 𝑉 is a diffeomorphism.

Example 3.15: A local diffeomorphism which is not global

Question. Define the function 𝑓 ∶ ℝ2 → ℝ2

𝑓 (𝑥, 𝑦) = (𝑒𝑥 cos(𝑦), 𝑒𝑥 sin(𝑦)) .
Prove 𝑓 is a local diffeomorphism but not a diffeomorphism.
Solution. 𝑓 is a local diffeomorphism at each point (𝑥, 𝑦) ∈ ℝ2 by
the Inverse Function Theorem, since

𝐽𝑓 (𝑥, 𝑦) = 𝑒𝑥 ( cos(𝑦) sin(𝑦)
− sin(𝑦) cos(𝑦) )

det 𝐽 𝑓 (𝑥, 𝑦) = 𝑒2𝑥 ≠ 0 .
However, 𝑓 is not invertible because it is not injective, since

𝑓 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦 + 2𝑛𝜋) , ∀ (𝑥, 𝑦) ∈ ℝ2, 𝑛 ∈ ℕ .
Hence, 𝑓 cannot be a diffeomorphism of ℝ2 into ℝ2.

3.1 Regular Surfaces

Definition 3.16: Surface

Let 𝒮 ⊆ ℝ3 be a connected set. We say that 𝒮 is a surface if for
every point p ∈ 𝒮 there exist an open set 𝑈 ⊆ ℝ2, and a smooth
map 𝜎𝜎𝜎 ∶ 𝑈 → 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮 such that

1. p ∈ 𝜎𝜎𝜎(𝑈 ),
2. 𝜎𝜎𝜎(𝑈 ) is open in 𝒮 ,
3. 𝜎𝜎𝜎 is a homeomorphism between 𝑈 and 𝜎𝜎𝜎(𝑈 ).

𝜎𝜎𝜎 is called a surface chart at p.

Definition 3.17: Atlas of a surface

Let 𝒮 be a surface. Assume given a collection of charts

𝒜 = {𝜎𝜎𝜎 𝑖}𝑖∈𝐼 , 𝜎𝜎𝜎 𝑖 ∶ 𝑈𝑖 → 𝜎𝜎𝜎(𝑈𝑖) ⊆ 𝒮 .

The family 𝒜 is an atlas of 𝒮 if

𝒮 = ⋃
𝑖∈𝐼

𝜎𝜎𝜎 𝑖(𝑈𝑖) .

Definition 3.18: Regular Chart

Let 𝑈 ⊆ ℝ2 be open. A map 𝜎𝜎𝜎 = 𝜎𝜎𝜎(𝑢, 𝑣)∶ 𝑈 → ℝ3 is a regular chart
if the partial derivatives

𝜎𝜎𝜎𝑢(𝑢, 𝑣) = 𝑑𝜎𝜎𝜎
𝑑𝑢 (𝑢, 𝑣) , 𝜎𝜎𝜎 𝑣 (𝑢, 𝑣) = 𝑑𝜎𝜎𝜎

𝑑𝑣 (𝑢, 𝑣)

are linearly independent vectors of ℝ3 for all (𝑢, 𝑣) ∈ 𝑈 .

Definition 3.19: Regular surface

Let 𝒮 be a surface. We say that:

• 𝒜 is a regular atlas if any 𝜎𝜎𝜎 in 𝒜 is regular.
• 𝒮 is a regular surface if it admits a regular atlas.

Theorem 3.20: Characterization of regular charts

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 with 𝑈 ⊆ ℝ2 open. They are equivalent:

1. 𝜎𝜎𝜎 is a regular chart.
2. 𝑑x𝜎𝜎𝜎 ∶ ℝ2 → ℝ3 is injective for all x ∈ 𝑈 .
3. The Jacobian matrix 𝐽𝜎𝜎𝜎 has rank 2 for all (𝑢, 𝑣) ∈ 𝑈 .
4. 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ≠ 0 for all (𝑢, 𝑣) ∈ 𝑈 .

Example 3.21: Unit cylinder

Question. Consider the infinite unit cylinder

𝒮 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 = 1} .
𝒮 is a surface with atlas 𝒜 = {𝜎𝜎𝜎1, 𝜎𝜎𝜎2}, with

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) , 𝜎𝜎𝜎1 = 𝜎𝜎𝜎|𝑈1 , 𝜎𝜎𝜎2 = 𝜎𝜎𝜎|𝑈2 ,
𝑈1 = (0, 3𝜋2 ) × ℝ , 𝑈2 = (𝜋, 5𝜋2 ) × ℝ .

Prove that 𝒮 is a regular surface.
Solution. The map 𝜎𝜎𝜎 is regular because

𝜎𝜎𝜎𝑢 = (− sin(𝑢), cos(𝑢), 0) , 𝜎𝜎𝜎 𝑣 = (0, 0, 1) ,
are linearly independent, since the last components of 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣
are 0 and 1. Therefore, also 𝜎𝜎𝜎1 and 𝜎𝜎𝜎2 are regular charts, being
restrictions of 𝜎𝜎𝜎 . Thus, 𝒜 is a regular atlas and 𝒮 a regular surface.

Example 3.22: Graph of a function

Question. Let 𝑓 ∶ 𝑈 → ℝ be smooth, 𝑈 ⊆ ℝ2 open. Define

Γ𝑓 = {(𝑢, 𝑣 , 𝑓 (𝑢, 𝑣)) ∶ (𝑢, 𝑣) ∈ 𝑈 } ,
the graph of 𝑓 . Then Γ𝑓 is surface with atlas 𝒜 = {𝜎𝜎𝜎}, where

𝜎𝜎𝜎 ∶ 𝑈 → Γ𝑓 , 𝜎𝜎𝜎(𝑢, 𝑣) ∶= (𝑢, 𝑣 , 𝑓 (𝑢, 𝑣)) .
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Prove that Γ𝑓 is a regular surface.
Solution. The Jacobian matrix of 𝜎𝜎𝜎 is

𝐽𝜎𝜎𝜎(𝑢, 𝑣) = (
1 0
0 1
𝑓𝑢 𝑓𝑣

) .

𝐽𝜎𝜎𝜎 has rank 2, because the first minor is the 2 × 2 identity matrix.
Therefore, 𝜎𝜎𝜎 is regular. This implies 𝒜 is a regular atlas, and 𝒮 is a
regular surface.

Definition 3.23: Spherical coordinates

The spherical coordinates of p = (𝑥, 𝑦 , 𝑧) ≠ 000 are

p = (𝜌 cos(𝜃) cos(𝜑), 𝜌 sin(𝜃) cos(𝜑), 𝜌 sin(𝜑)) ,
𝜌 = √𝑥2 + 𝑦2 + 𝑧2, 𝜃 ∈ [−𝜋, 𝜋], 𝜑 ∈ [−𝜋

2 ,
𝜋
2 ]

Example 3.24: Unit sphere in spherical coordinates

Question. Consider the unit sphere in ℝ3

𝕊2 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 + 𝑧2 = 1} .
Prove that 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 is regular, where

𝜎𝜎𝜎(𝜃, 𝜑) = (cos(𝜃) cos(𝜑), sin(𝜃) cos(𝜑), sin(𝜑)) ,
𝑈 = {(𝜃, 𝜑) ∈ ℝ2 ∶ 𝜃 ∈ (−𝜋, 𝜋), 𝜑 ∈ (−𝜋

2 ,
𝜋
2 )} .

Solution. The chart 𝜎𝜎𝜎 is regular because

𝜎𝜎𝜎 𝜃 = (− sin(𝜃) cos(𝜑), cos(𝜃) cos(𝜑), 0)
𝜎𝜎𝜎𝜑 = (− cos(𝜃) sin(𝜑), − sin(𝜃) sin(𝜑), cos(𝜑))
𝜎𝜎𝜎 𝜃 × 𝜎𝜎𝜎𝜑 = (cos(𝜃) cos2(𝜑), sin(𝜃) cos2(𝜑), cos(𝜑) sin(𝜑))
‖𝜎𝜎𝜎 𝜃 × 𝜎𝜎𝜎𝜑‖ = | cos(𝜑)| = cos(𝜑) ≠ 0 ,

where we used that cos(𝜙) > 0, since 𝜑 ∈ (−𝜋/2, 𝜋/2).

Example 3.25: A non-regular chart

Question. Prove that the following chart is not regular

𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢, 𝑣2, 𝑣3) .
Solution. We have

𝜎𝜎𝜎 𝑣 = (0, 2𝑣 , 3𝑣2) , 𝜎𝜎𝜎 𝑣 (𝑢, 0) = (0, 0, 0) .
𝜎𝜎𝜎 is not regular because 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly dependent along the
line 𝐿 = {(𝑢, 0) ∶ 𝑢 ∈ ℝ}.

Definition 3.26: Reparametrization

Suppose that 𝑈 , 𝑈 ⊆ ℝ2 are open sets and

𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 , �̃�𝜎𝜎 ∶ 𝑈 → ℝ3 ,
are surface charts. We say that �̃�𝜎𝜎 is a reparametrization of 𝜎𝜎𝜎 if

there exists a diffeomorphism Φ∶ 𝑈 → 𝑈 such that

�̃�𝜎𝜎 = 𝜎𝜎𝜎 ∘ Φ .

Theorem 3.27: Reparametrizations of regular charts are regular

Let 𝑈 , 𝑈 ⊆ ℝ2 be open and 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be regular. Suppose given a
diffeomorphism Φ∶ 𝑈 → 𝑈 . The reparametrization

�̃�𝜎𝜎 ∶ 𝑈 → ℝ3 , �̃�𝜎𝜎 = 𝜎𝜎𝜎 ∘ Φ
is a regular chart, and it holds

�̃�𝜎𝜎 �̃� × �̃�𝜎𝜎 ̃𝑣 = det 𝐽Φ (𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ) .

Definition 3.28: Transition map

Let 𝒮 be a regular surface, 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 , �̃�𝜎𝜎 ∶ 𝑈 → 𝒮 regular charts.
Suppose the images of 𝜎𝜎𝜎 and �̃�𝜎𝜎 overlap

𝐼 ∶= 𝜎𝜎𝜎(𝑈 ) ∩ �̃�𝜎𝜎(𝑈 ) ≠ ∅ .
𝐼 is open in 𝒮 , being intersection of open sets. Define

𝑉 ∶= 𝜎𝜎𝜎−1(𝐼 ) ⊆ 𝑈 , 𝑉 ∶= �̃�𝜎𝜎−1(𝐼 ) ⊆ 𝑈 .
𝑉 and 𝑉 are open, by continuity of 𝜎𝜎𝜎 and �̃�𝜎𝜎 . Moreover, as 𝜎𝜎𝜎 and �̃�𝜎𝜎
are homeomorphisms, we have 𝜎𝜎𝜎(𝑉 ) = �̃�𝜎𝜎(𝑉 ) = 𝐼 . Therefore, they
are well defined the restriction homeomorphisms

𝜎𝜎𝜎|𝑉 ∶ 𝑉 → 𝐼 , �̃�𝜎𝜎 |𝑉 ∶ 𝑉 → 𝐼 .
The transition map from 𝜎𝜎𝜎 to �̃�𝜎𝜎 is the homeomorphism

Φ∶ 𝑉 → 𝑉 , Φ ∶= 𝜎𝜎𝜎−1 ∘ �̃�𝜎𝜎 .

Theorem 3.29

Transition maps between regular charts are diffeomorphisms.

Theorem 3.30: Transition maps are reparametrizations

Let 𝒮 be a regular surface, 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 , �̃�𝜎𝜎 ∶ 𝑈 → 𝒮 regular charts,
with 𝐼 ∶= 𝜎𝜎𝜎(𝑈 ) ∩ �̃�𝜎𝜎(𝑈 ) ≠ ∅. Define the transition map

Φ = 𝜎𝜎𝜎−1 ∘ �̃�𝜎𝜎 ∶ 𝑉 → 𝑉 , 𝑉 = 𝜎𝜎𝜎−1(𝐼 ), 𝑉 = �̃�𝜎𝜎−1(𝐼 ) .
Then 𝜎𝜎𝜎 and �̃�𝜎𝜎 are reparametrization of each other, with

�̃�𝜎𝜎 = 𝜎𝜎𝜎 ∘ Φ , 𝜎𝜎𝜎 = �̃�𝜎𝜎 ∘ Φ−1 .

3.2 Smooth maps and tangent plane

Definition 3.31: Smooth functions between surfaces

Let 𝒮1 and 𝒮2 be regular surfaces and 𝑓 ∶ 𝒮1 → 𝒮2 a map.

1. 𝑓 is smooth at p ∈ 𝒮1, if there exist charts

𝜎𝜎𝜎 𝑖 ∶ 𝑈𝑖 → 𝒮𝑖 such that p ∈ 𝜎𝜎𝜎1(𝑈1) , 𝑓 (p) ∈ 𝜎𝜎𝜎2(𝑈2) ,
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and that the following map is smooth

Ψ∶ 𝑈1 → 𝑈2 , Ψ = 𝜎𝜎𝜎−12 ∘ 𝑓 ∘ 𝜎𝜎𝜎1 .

2. 𝑓 is smooth, if it is smooth for each p ∈ 𝒮1.

Proposition 3.32: Inverse of a regular chart is smooth

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be regular. Then 𝜎𝜎𝜎−1 ∶ 𝜎𝜎𝜎(𝑈 ) → 𝑈 is smooth.

Definition 3.33: Diffeomorphism of surfaces

Let 𝒮1 and 𝒮2 be regular surfaces.

1. 𝑓 ∶ 𝒮1 → 𝒮2 is a diffeomorphism, if 𝑓 is smooth and admits
smooth inverse.

2. 𝒮1, 𝒮2 are diffeomorphic if there exists 𝑓 ∶ 𝒮1 → 𝒮2 diffeo-
morphism.

Proposition 3.34: Image of charts under diffeomorphisms

Let 𝒮 and 𝒮 be regular surfaces, 𝑓 ∶ 𝒮 → 𝒮 diffeomorphism. If
𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 is a regular chart for 𝒮 at p, then

�̃�𝜎𝜎 ∶ 𝑈 → 𝒮 , �̃�𝜎𝜎 ∶= 𝑓 ∘ 𝜎𝜎𝜎 ,
is a regular chart for 𝒮 at 𝑓 (p).

Definition 3.35: Local diffeomorphism

Let 𝒮1 and 𝒮2 be regular surfaces, and 𝑓 ∶ 𝒮1 → 𝒮2 smooth.

1. 𝑓 is a local diffeomorphism at p ∈ 𝒮1 if:

• There exists An open set 𝑉 ⊆ 𝒮1 with p ∈ 𝑉 ;
• 𝑓 (𝑉 ) ⊆ 𝒮2 is open;
• 𝑓 ∶ 𝑉 → 𝑓 (𝑉 ) is smooth between surfaces.

2. 𝑓 is a local diffeomorphism in 𝒮1, if it is a local diffeomor-
phism at each p ∈ 𝒮1.

3. 𝒮1 is locally diffeomorphic to𝒮2, if for all p ∈ 𝒮1 there exists
𝑓 local diffeomorphism at p.

Definition 3.36: Tangent vectors and tangent plane

Let 𝒮 be a surface and p ∈ 𝒮 .

1. v ∈ ℝ3 is a tangent vector to 𝒮 at p, if there exists a smooth
curve 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → ℝ3 such that

𝛾𝛾𝛾 (−𝜀, 𝜀) ⊆ 𝒮 , 𝛾𝛾𝛾 (0) = p , v = ̇𝛾𝛾𝛾 (0) .

2. The tangent plane of 𝒮 at p is the set

𝑇p𝒮 ∶= {v ∈ ℝ3 ∶ v tangent vector of 𝒮 at p} .

Lemma 3.37: Curves with values on surfaces

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart and 𝒮 ∶= 𝜎𝜎𝜎(𝑈 ). Let p ∈ 𝒮 and
(𝑢0, 𝑣0) = 𝜎𝜎𝜎−1(p). Assume 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → ℝ3 is a smooth curve such
that

𝛾𝛾𝛾 (−𝜀, 𝜀) ⊆ 𝒮 , 𝛾𝛾𝛾 (0) = p .
There exist smooth functions 𝑢, 𝑣 ∶ (−𝜀, 𝜀) → ℝ such that

𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) , ∀ 𝑡 ∈ (−𝜀, 𝜀) , 𝑢(0) = 𝑢0 , 𝑣(0) = 𝑣0 .

Theorem 3.38: Characterization of Tangent Plane

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart and 𝒮 ∶= 𝜎𝜎𝜎(𝑈 ). Let p ∈ 𝒮 . Then

𝑇p𝒮 = span{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } ∶= {𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣 ∶ 𝜆, 𝜇 ∈ ℝ} ,

where 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are evaluated at (𝑢, 𝑣) = 𝜎𝜎𝜎−1(p).

Theorem 3.39: Equation of tangent plane

Let 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 be regular, 𝒮 = 𝜎𝜎𝜎(𝑈 ). Let p ∈ 𝒮 and

n ∶= 𝜎𝜎𝜎𝑢(𝑢, 𝑣) × 𝜎𝜎𝜎 𝑣 (𝑢, 𝑣) , (𝑢, 𝑣) ∶= 𝜎𝜎𝜎−1(p) .
The equation of the tangent plane 𝑇p𝒮 is given by

x ⋅ n = 0 , ∀x ∈ ℝ3 .

Example 3.40: Calculation of tangent plane

Question. For 𝑢 ∈ (0, 2𝜋), 𝑣 < 1, let 𝒮 charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (√1 − 𝑣 cos(𝑢), √1 − 𝑣 sin(𝑢), 𝑣) .

1. Prove that 𝜎𝜎𝜎 charts the paraboloid 𝑥2 + 𝑦2 − 𝑧 = 1.
2. Prove that 𝜎𝜎𝜎 is regular and compute n = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 .
3. Give a basis for 𝑇p𝒮 at p = (√2/2, √2/2, 0).
4. Compute the cartesian equation of 𝑇p𝒮 .

Solution.

1. Denote 𝜎𝜎𝜎(𝑢, 𝑣) = (𝑥, 𝑦 , 𝑧). We have

𝑥2 + 𝑦2 = (√1 − 𝑣 cos(𝑢))2 + (√1 − 𝑣 sin(𝑢))2

= 1 − 𝑣 = 1 − 𝑧 .

2. We compute n = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 and show that 𝜎𝜎𝜎 is regular:

𝜎𝜎𝜎𝑢 = (−√1 − 𝑣 sin(𝑢), √1 − 𝑣 cos(𝑢), 0)
𝜎𝜎𝜎 𝑣 = (−1

2(1 − 𝑣)−1/2 cos(𝑢), −1
2(1 − 𝑣)−1/2 sin(𝑢), 1)

n = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = (√1 − 𝑣 cos(𝑢), √1 − 𝑣 sin(𝑢), 12) ≠ 000

3. Notice that 𝜎𝜎𝜎 (𝜋/4, 0) = p. A basis for 𝑇p𝒮 is

𝜎𝜎𝜎𝑢 (𝜋4 , 0) = (−√2
2 , √22 , 0) ,

𝜎𝜎𝜎 𝑣 (𝜋4 , 0) = (−√2
4 , −√2

4 , 1) .
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4. Using the calculation for n in Point 2, we find

n (𝜋4 , 0) = (√22 , √22 , −1
2) .

The equation for 𝑇p𝒮 is x ⋅ n = 0, which reads

√2 𝑥 + √2 𝑦 − 𝑧 = 0 .

Definition 3.41: Standard unit normal of a chart

Let 𝒮 be a regular surface and 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 a regular chart. The
standard unit normal of 𝜎𝜎𝜎 is the smooth function

N𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 , N𝜎𝜎𝜎 = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

.

Example 3.42: Calculation of N

Question. Compute the standard unit normal to

𝜎𝜎𝜎(𝑢, 𝑣) = (𝑒𝑢 , 𝑢 + 𝑣, 𝑣) , 𝑢, 𝑣 ∈ ℝ .
Solution. The standard unit normal to 𝜎𝜎𝜎 is

𝜎𝜎𝜎𝑢 = (𝑒𝑢 , 1, 0) , 𝜎𝜎𝜎 𝑣 = (0, 1, 1) , ‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = √1 + 2𝑒2𝑢

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = (1, −𝑒𝑢 , 𝑒𝑢) N𝜎𝜎𝜎 = (1, −𝑒𝑢 , 𝑒𝑢)
√1 + 2𝑒2𝑢

Definition 3.43: Unit normal of a surface

Let𝒮 be a regular surface. Aunit normal to𝒮 is a smooth function
N∶ 𝒮 → ℝ3 such that

N(p) ⟂ 𝑇p𝒮 , ‖N(p)‖ = 1 , ∀p ∈ 𝒮 .

Definition 3.44: Orientable surface

A regular surface 𝒮 is orientable if there exists a unit normal
N∶ 𝒮 → ℝ3 and an atlas 𝒜 such that

N ∘ 𝜎𝜎𝜎 = N𝜎𝜎𝜎 , ∀𝜎𝜎𝜎 ∈ 𝒜 .

Definition 3.45: Differential of smooth function

Let 𝒮 and 𝒮 be regular surfaces and 𝑓 ∶ 𝒮 → 𝒮 a smooth map. The
differential 𝑑p𝑓 of 𝑓 at p is defined as the map

𝑑p𝑓 ∶ 𝑇p𝒮 → 𝑇𝑓 (p)𝒮 , 𝑑p𝑓 (v) ∶= (𝑓 ∘ 𝛾𝛾𝛾 )′(0) ,
with 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → 𝒮 smooth curve, 𝛾𝛾𝛾 (0) = p, ̇𝛾𝛾𝛾 (0) = v.

Example 3.46: Computing 𝑑p𝑓 using the definition

Question. Consider the plane 𝒮 = {𝑧 = 0}, the unit cylinder 𝒮 =
{𝑥2 + 𝑦2 = 1}, and the map

𝑓 ∶ 𝑆 → 𝒮 , 𝑓 (𝑥, 𝑦 , 0) = (cos 𝑥, sin 𝑥, 𝑦) .

1. Compute 𝑇p𝒮 .
2. Compute 𝑑p𝑓 at p = (𝑢0, 𝑣0, 0) and v = (𝜆, 𝜇, 0).

Solution.

1. A chart for 𝒮 is given by 𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢, 𝑣 , 0). Hence,

𝜎𝜎𝜎𝑢 = (1, 0, 0) , 𝜎𝜎𝜎 𝑣 = (0, 1, 0) ,
and the tangent space is

𝑇p𝒮 = span{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } = {(𝜆, 𝜇, 0) ∶ 𝜆, 𝜇 ∈ ℝ} .

2. Define the curve 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → 𝒮 by setting

𝛾𝛾𝛾 (𝑡) ∶= 𝜎𝜎𝜎(𝑢0 + 𝑡𝜆, 𝑣0 + 𝑡𝜇) = (𝑢0 + 𝑡𝜆, 𝑣0 + 𝑡𝜇, 0) .
Note that 𝛾𝛾𝛾 (0) = p and ̇𝛾𝛾𝛾 (0) = v = (𝜆, 𝜇, 0). Therefore, the
differential is given by

(𝑓 ∘ 𝛾𝛾𝛾 )(𝑡) = (cos(𝑢0 + 𝑡𝜆), sin(𝑢0 + 𝑡𝜆), 𝑣0 + 𝑡𝜇) ,
(𝑓 ∘ 𝛾𝛾𝛾 )′(𝑡) = (−𝜆 sin(𝑢0 + 𝑡𝜆), 𝜆 cos(𝑢0 + 𝑡𝜆), 𝜇) ,
𝑑p𝑓 (v) = (𝑓 ∘ 𝛾𝛾𝛾 )′(0) = (−𝜆 sin(𝑢0), 𝜆 cos(𝑢0), 𝜇) .

Theorem 3.47: Matrix of 𝑑p𝑓

Let 𝒮 , 𝒮 be regular surfaces, and 𝑓 ∶ 𝒮 → 𝒮 smooth.

1. 𝑑p𝑓 (v) depends only on 𝑓 ,p, v (and not on 𝛾𝛾𝛾 ).
2. 𝑑p𝑓 is linear, that is, for all v,w ∈ 𝑇p𝒮 and 𝜆, 𝜇 ∈ ℝ

𝑑p𝑓 (𝜆v + 𝜇w) = 𝜆𝑑p𝑓 (v) + 𝜇𝑑p𝑓 (w) .

3. Let 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 , �̃�𝜎𝜎 ∶ 𝑈 → 𝒮 be regular charts at p, 𝑓 (p). Let 𝛼
and 𝛽 be the components of Ψ = �̃�𝜎𝜎−1 ∘ 𝑓 ∘ 𝜎𝜎𝜎 , so that

�̃�𝜎𝜎(𝛼(𝑢, 𝑣), 𝛽(𝑢, 𝑣)) = 𝑓 (𝜎𝜎𝜎(𝑢, 𝑣)) , ∀ (𝑢, 𝑣) ∈ 𝑈 .
The matrix of 𝑑p𝑓 with respect to the basis

{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } on 𝑇p𝒮 , {�̃�𝜎𝜎 �̃� , �̃�𝜎𝜎 ̃𝑣 } on 𝑇𝑓 (p)𝒮 ,
is given by the Jacobian of the map Ψ, that is,

𝐽Ψ = ( 𝛼𝑢 𝛼𝑣
𝛽𝑢 𝛽𝑣 ) .

Example 3.48: Computing the matrix of 𝑑p𝑓

Question. Let 𝒮 be the cylinder, and 𝒮 the plane, charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (cos 𝑢, sin 𝑢, 𝑣) , �̃�𝜎𝜎(𝑢, 𝑣) = (𝑢, 𝑣 , 0) ,
defined on 𝑈 = (0, 2𝜋) × ℝ and 𝑈 = ℝ2. Define the map

𝑓 ∶ 𝒮 → 𝒮 , 𝑓 (𝑥, 𝑦 , 𝑧) = (𝑦, 𝑥𝑧, 0) .
Compute the matrix of 𝑑p𝑓 with respect to {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } and {�̃�𝜎𝜎𝑢 , �̃�𝜎𝜎 𝑣 }.
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Solution. Note that �̃�𝜎𝜎−1(𝑢, 𝑣 , 0) = (𝑢, 𝑣). Hence,

Ψ(𝑢, 𝑣) = �̃�𝜎𝜎−1 (𝑓 (𝜎𝜎𝜎(𝑢, 𝑣))) = �̃�𝜎𝜎−1 (𝑓 (cos 𝑢, sin 𝑢, 𝑣))
= �̃�𝜎𝜎−1 (sin(𝑢), cos(𝑢)𝑣 , 0) = (sin(𝑢), cos(𝑢)𝑣) .

The components of Ψ are

𝛼(𝑢, 𝑣) = sin(𝑢) , 𝛽(𝑢, 𝑣) = cos(𝑢)𝑣 .
The matrix of 𝑑p𝑓 is hence

𝐽Ψ = ( 𝛼𝑢 𝛼𝑣
𝛽𝑢 𝛽𝑣 ) = ( cos(𝑢) 0

− sin(𝑢)𝑣 cos(𝑢) ) .

3.3 Examples of Surfaces

Definition 3.49: Level surface

Let 𝑓 ∶ 𝑉 → ℝ be smooth, 𝑉 ⊆ ℝ3 open. The level surface associ-
ated to 𝑓 is the set

𝒮𝑓 = 𝑓 −1({0}) = {(𝑥, 𝑦 , 𝑧) ∈ 𝑉 ∶ 𝑓 (𝑥, 𝑦 , 𝑧) = 0} .

Theorem 3.50: Regularity of level surfaces

Let 𝑓 ∶ 𝑉 → ℝ be smooth, with 𝑉 ⊆ ℝ3 open. Assume

∇𝑓 (𝑥, 𝑦 , 𝑧) ≠ 000 , ∀ (𝑥, 𝑦 , 𝑧) ∈ 𝑉 .
Then 𝒮𝑓 is a regular surface.

Example 3.51: Circular cone

Question. Prove the circular cone is a regular surface

𝒮 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 = 𝑧2 , 𝑧 > 0} .
Solution. Define the open set 𝑉 ⊂ ℝ3 and 𝑓 ∶ 𝑉 → ℝ by

𝑉 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑧 > 0} , 𝑓 (𝑥, 𝑦 , 𝑧) = 𝑥2 + 𝑦2 − 𝑧2 .
𝒮 is a regular surface, since 𝒮 = 𝒮𝑓 and

∇𝑓 (𝑥, 𝑦 , 𝑧) = (2𝑥, 2𝑦, −2𝑧) ≠ 000 , ∀ (𝑥, 𝑦 , 𝑧) ∈ 𝑉 .

Theorem 3.52: Tangent plane of level surfaces

Let 𝑓 ∶ 𝑉 → ℝ be smooth, with 𝑉 ⊆ ℝ3 open. Assume

∇𝑓 (𝑥, 𝑦 , 𝑧) ≠ 000 , ∀ (𝑥, 𝑦 , 𝑧) ∈ 𝑉 .
Let p ∈ 𝒮𝑓 . Then ∇𝑓 (p) ⟂ 𝑇p𝒮𝑓 and 𝑇p𝒮𝑓 has equation

∇𝑓 (p) ⋅ x = 0 , ∀x ∈ ℝ3 .

Example 3.53: Unit cylinder

Question. Consider the unit cylinder 𝒮 = {𝑥2 + 𝑦2 = 1}.
1. Prove that 𝒮 is a regular surface.
2. Find the equation of 𝑇p𝒮 at p = (√2/2, √2/2, 5).

Solution.

1. Define the open set 𝑉 ⊆ ℝ3 and 𝑓 ∶ 𝑉 → ℝ by

𝑉 = ℝ3 ∖ {(0, 0, 𝑧) ∶ 𝑧 ∈ ℝ} , 𝑓 (𝑥, 𝑦 , 𝑧) ∶= 𝑥2 + 𝑦2 − 1 .
𝒮 is a regular surface, since 𝒮 = 𝒮𝑓 and

∇𝑓 (𝑥, 𝑦 , 𝑧) = (2𝑥, 2𝑦, 0) ≠ 000 , ∀ (𝑥, 𝑦 , 𝑧) ∈ 𝑉 .

2. Using the expression for ∇𝑓 in Point 1, we get

∇𝑓 (p) = ∇𝑓 (√22 , √22 , 5) = (√2, √2, 0) .

The equation for 𝑇p𝒮 is

∇𝑓 (p) ⋅ x = 0 ⟺ 𝑥 + 𝑦 = 0 .

Definition 3.54: Ruled surface

A ruled surface is a surface with chart

𝜎𝜎𝜎(𝑢, 𝑣) = 𝛾𝛾𝛾 (𝑢) + 𝑣a(𝑢) ,
where 𝛾𝛾𝛾 , a∶ (𝑎, 𝑏) → ℝ3 are smooth curves, such that

̇𝛾𝛾𝛾 (𝑡) and a(𝑡) are linearly independent for all 𝑡 ∈ (𝑎, 𝑏).
𝛾𝛾𝛾 is the base curve and the lines 𝑣 ↦ 𝑣a(𝑢) the rulings.

Theorem 3.55: Regularity of ruled surfaces

A ruled surface 𝒮 is regular if 𝑣 is sufficiently small.

Example 3.56: Unit Cylinder is ruled surface

Question. Prove that the unit cylinder is a ruled surface.
Solution. The unit cylinder 𝒮 is charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) = 𝛾𝛾𝛾 (𝑢) + 𝑣a(𝑢)
𝛾𝛾𝛾 (𝑢) = (cos(𝑢), sin(𝑢), 0) , a = (0, 0, 1)

𝒮 is a ruled surface, since the vectors

̇𝛾𝛾𝛾 = (− sin(𝑢), cos(𝑢), 0) , a = (0, 0, 1)
are orthogonal, and hence linearly independent.

Example 3.57: A ruled surface

Question. Show that the following surface is ruled

𝑆 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 10𝑥𝑦 + 16𝑥2 − 𝑧 = 0} .
Solution. We can rearrange

𝑥2 + 10𝑥𝑦 + 16𝑥2 − 𝑧 = 0 ⟺ (𝑥 + 8𝑦)(𝑥 + 2𝑦) = 𝑧 .
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Let 𝑢 = 𝑥 + 8𝑦 and 𝑣 = 𝑥 + 2𝑦 . Therefore 𝑢𝑣 = 𝑧 and

𝑢 − 𝑣 = 6𝑦 ⟹ 𝑦 = 𝑢 − 𝑣
6 ⟹ 𝑥 = 𝑢 − 8𝑦 = 4𝑣 − 𝑢

3 .

It follows that if (𝑥, 𝑦 , 𝑧) ∈ 𝑆 then

(𝑥, 𝑦 , 𝑧) = (4𝑣 − 𝑢
3 , 𝑢 − 𝑣

6 , 𝑢𝑣)

= (−𝑢
3 ,

𝑢
6 , 0) + 𝑣 (43 , −

1
6 , 𝑢) = 𝛾𝛾𝛾 (𝑢) + 𝑣a(𝑢) .

When 𝑢 ≠ 0, the vectors

a(𝑢) = (43 , −
1
6 , 𝑢) , ̇𝛾𝛾𝛾 (𝑢) = (−1

3 ,
1
6 , 0) ,

are linearly independent, as the last component of ̇𝛾𝛾𝛾 (𝑢) is 0. Also
a(0) and ̇𝛾𝛾𝛾 (0) are linearly independent. Thus, 𝒮 is a ruled surface.

Definition 3.58: Surface of revolution

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a smooth curve in the (𝑥, 𝑧)-plane,
𝛾𝛾𝛾 (𝑣) = (𝑓 (𝑣), 0, 𝑔(𝑣)) , 𝑓 > 0 .

The surface 𝒮 formed by rotating 𝛾𝛾𝛾 about the 𝑧-axis, called a sur-
face of revolution, is charted by 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢)𝑓 (𝑣), sin(𝑢)𝑓 (𝑣), 𝑔(𝑣)) , 𝑈 = (0, 2𝜋) × (𝑎, 𝑏) .

Theorem 3.59: Regularity of surfaces of revolution

A surface of revolution is regular if and only if 𝛾𝛾𝛾 is regular.

Example 3.60: Catenoid is surface of revolution

Question. The Catenoid 𝒮 is the surface of revolution formed by
rotating the catenary 𝛾𝛾𝛾 (𝑣) = (cosh(𝑣), 0, 𝑣) about the 𝑧-axis. A chart
for 𝒮 is given by

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢) cosh(𝑣), sin(𝑢) cosh(𝑣), 𝑣) ,
with 𝑢 ∈ (0, 2𝜋), 𝑣 ∈ ℝ. Prove that 𝒮 is a regular surface.
Solution. Note that 𝑓 > 0. 𝒮 is regular because 𝛾𝛾𝛾 is regular, as

̇𝛾𝛾𝛾 = (sinh(𝑣), 0, 1) , ‖ ̇𝛾𝛾𝛾 ‖2 = 1 + sinh(𝑣)2 ≥ 1 .

3.4 First fundamental form

Definition 3.61: First fundamental form (FFF)

Let𝒮 be a regular surface and p ∈ 𝒮 . Thefirst fundamental form
(FFF) of 𝒮 at p is the bilinear symmetric map

𝐼p ∶ 𝑇p𝒮 × 𝑇p𝒮 → ℝ , 𝐼p(v,w) ∶= v ⋅w .

Definition 3.62: Coordinate functions on tangent plane

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be regular, 𝒮 = 𝜎𝜎𝜎(𝑈 ). The coordinate functions
on 𝑇p𝒮 are the linear maps

𝑑𝑢, 𝑑𝑣 ∶ 𝑇p𝒮 → ℝ , 𝑑𝑢(v) ∶= 𝜆 , 𝑑𝑣(v) ∶= 𝜇 ,
where v = 𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣 , since {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } is a basis for 𝑇p𝒮 .

Definition 3.63: FFF of a chart

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be regular, 𝒮 = 𝜎𝜎𝜎(𝑈 ). Define 𝐸, 𝐹 , 𝐺 ∶ 𝑈 → ℝ
𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 , 𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 , 𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 .

The FFF of 𝜎𝜎𝜎 is the quadratic form ℱ1 ∶ 𝑇p𝒮 → ℝ

ℱ1(v) = 𝐸 𝑑𝑢2(v) + 2𝐹 𝑑𝑢(v) 𝑑𝑣(v) + 𝐺 𝑑𝑣2(v) , ∀ 𝑣 ∈ 𝑇p𝒮 ,

for all p ∈ 𝜎𝜎𝜎(𝑈 ), with 𝐸, 𝐹 , 𝐺 evaluated at (𝑢, 𝑣) = 𝜎𝜎𝜎−1(p).

Theorem 3.64: Matrix of FFF

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be regular, 𝒮 = 𝜎𝜎𝜎(𝑈 ), and p ∈ 𝜎𝜎𝜎(𝑈 ). Then

𝐼p(v,w) = (𝑑𝑢(v), 𝑑𝑣(v)) ( 𝐸 𝐹
𝐹 𝐺 ) (𝑑𝑢(w), 𝑑𝑣(w))𝑇 ,

for all v,w ∈ 𝑇p𝒮 . In particular, it holds

ℱ1(v) = 𝐼p(v, v) , ∀ v ∈ 𝑇p𝒮 .

Example 3.65: FFF of Unit cylinder

Question. Consider the unit cylinder with chart

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) , (𝑢, 𝑣) ∈ (0, 2𝜋) × ℝ .
Prove that the FFF of 𝜎𝜎𝜎 is

ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 .
Solution. We have

𝜎𝜎𝜎𝑢 = (− sin(𝑢), cos(𝑢), 0) 𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 0
𝜎𝜎𝜎 𝑣 = (0, 0, 1) 𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 1
𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 1 ℱ1 = 𝑑𝑢2 + 𝑑𝑣2

Proposition 3.66: FFF and reparametrizations

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be regular, and �̃�𝜎𝜎 ∶ 𝑈 → ℝ3 a reparametrization,
with �̃�𝜎𝜎 = 𝜎𝜎𝜎 ∘ Φ and Φ∶ 𝑈 → 𝑈 diffeomorphism. The matrices ℱ1
and ℱ̃1 of the FFF of 𝜎𝜎𝜎 and �̃�𝜎𝜎 are related by

ℱ̃1 = (𝐽Φ)𝑇 ℱ1 𝐽Φ , ℱ1 = ( 𝐸 𝐹
𝐹 𝐺 ) , ℱ̃1 = ( 𝐸 𝐹

𝐹 𝐺 ) .

Example 3.67: FFF of Plane

Question. Let a,p,q ∈ ℝ3, with p, q orthonormal. The plane in
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cartesian and polar coordinates is charted by, respectively,

𝜎𝜎𝜎(𝑢, 𝑣) = a + 𝑢p + 𝑣q , (𝑢, 𝑣) ∈ ℝ2 ,
�̃�𝜎𝜎(𝜌, 𝜃) = a + 𝜌 cos(𝜃)p + 𝜌 sin(𝜃)q , 𝜌 > 0, 𝜃 ∈ (0, 2𝜋) .

1. Show that the FFF of 𝜎𝜎𝜎 and �̃�𝜎𝜎 are

ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 , ℱ̃1 = 𝑑𝜌2 + 𝜌2𝑑𝜃2 .

2. Let Φ be the change of variables from polar to cartesian coor-
dinates. Show that

ℱ̃1 = (𝐽Φ)𝑇 ℱ1 𝐽Φ .

Solution.

1. Using that p and q are orthonormal,

𝜎𝜎𝜎𝑢 = p , �̃�𝜎𝜎𝜌 = cos(𝜃)p + sin(𝜃)q
𝜎𝜎𝜎 𝑣 = q �̃�𝜎𝜎 𝜃 = −𝜌 sin(𝜃)p + 𝜌 cos(𝜃)q
𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 1 𝐸 = �̃�𝜎𝜎𝜌 ⋅ �̃�𝜎𝜎𝜌 = 1
𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 0 𝐹 = �̃�𝜎𝜎𝜌 ⋅ �̃�𝜎𝜎 𝜃 = 0
𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 1 𝐺 = �̃�𝜎𝜎 𝜃 ⋅ �̃�𝜎𝜎 𝜃 = 𝑟2
ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 ℱ̃1 = 𝑑𝜌2 + 𝜌2𝑑𝜃2

2. We have Φ(𝜌, 𝜃) = (𝜌 cos(𝜃), 𝜌 sin(𝜃)). Then
(𝐽Φ)𝑇 ℱ1𝐽Φ = (𝐽Φ)𝑇 𝐽Φ

= ( cos(𝜃) sin(𝜃)
−𝜌 sin(𝜃) 𝜌 cos(𝜃) ) ( cos(𝜃) −𝜌 sin(𝜃)

sin(𝜃) 𝜌 cos(𝜃) )

= ( 1 0
0 𝜌2 ) = ℱ̃1 .

3.5 Length of curves

Proposition 3.68: Length of curves and FFF

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be regular, 𝒮 = 𝜎𝜎𝜎(𝑈 ). Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 be a
smooth curve. Then

𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) ,
for some smooth functions 𝑢, 𝑣 ∶ (𝑎, 𝑏) → ℝ, and

∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 = ∫

𝑏

𝑎
√𝐸 ̇𝑢2 + 2𝐹 ̇𝑢 ̇𝑣 + 𝐺 ̇𝑣2 𝑑𝑡 ,

where ̇𝑢, ̇𝑣 are computed at 𝑡 , and 𝐸, 𝐹 , 𝐺 at (𝑢(𝑡), 𝑣(𝑡)).

Example 3.69: Curves on the Cone

Question. Consider the cone with chart

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢)𝑣 , sin(𝑢)𝑣 , 𝑣) , 𝑢 ∈ (0, 2𝜋), 𝑣 > 0 .
1. Compute the first fundamental form of 𝜎𝜎𝜎 .
2. Compute the length of 𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑡, 𝑡) for 𝑡 ∈ (𝜋/2, 𝜋).

Solution.

1. The first fundamental form of 𝜎𝜎𝜎 is

𝜎𝜎𝜎𝑢 = (− sin(𝑢)𝑣 , cos(𝑢)𝑣 , 0) 𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 0
𝜎𝜎𝜎 𝑣 = (cos(𝑢), sin(𝑢), 1) 𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 2
𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 𝑣2 ℱ1 = 𝑣2 𝑑𝑢2 + 2 𝑑𝑣2

2. 𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) with 𝑢(𝑡) = 𝑡 and 𝑣(𝑡) = 𝑡 . Then
̇𝑢 = 1 , ̇𝑣 = 1 𝐹(𝑢(𝑡), 𝑣(𝑡)) = 𝐹(𝑡, 𝑡) = 0
𝐸(𝑢(𝑡), 𝑣(𝑡)) = 𝐸(𝑡, 𝑡) = 𝑡2 𝐺(𝑢(𝑡), 𝑣(𝑡)) = 𝐺(𝑡, 𝑡) = 2

The length of 𝛾𝛾𝛾 between 𝜋/2 and 𝜋 is

∫
𝜋

𝜋/2
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 = ∫

𝜋

𝜋/2
√𝑡2 + 2 𝑑𝑡 .

3.6 Local isometries

Definition 3.70: Local isometry

Let 𝒮 and 𝒮 be regular and 𝑓 ∶ 𝒮 → 𝒮 smooth. We say that 𝑓 is a
local isometry, if for all p ∈ 𝒮

v ⋅w = 𝑑p𝑓 (v) ⋅ 𝑑p𝑓 (w) , ∀ v,w ∈ 𝑇p𝒮 .

In this case, 𝒮 and 𝒮 are said to be locally isometric.

Proposition 3.71

Local isometries are local diffeomorphims.

Theorem 3.72: Local isometries preserve lengths

Let 𝒮 , 𝒮 be regular surfaces, 𝑓 ∶ 𝒮 → 𝒮 smooth. Equivalently:

1. 𝑓 is a local isometry.
2. Let 𝛾𝛾𝛾 be a curve on 𝒮 and define the curve ̃𝛾𝛾𝛾 = 𝑓 ∘𝛾𝛾𝛾 on 𝒮 . Then

𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 have the same length.

Theorem 3.73: Local isometries preserve FFF

Let 𝒮 , 𝒮 be regular surfaces, 𝑓 ∶ 𝒮 → 𝒮 smooth. Equivalently:

1. 𝑓 is a local isometry.
2. Let 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 be regular chart of 𝒮 , and define a chart of 𝒮

as �̃�𝜎𝜎 ∶ 𝑈 → 𝒮 , with �̃�𝜎𝜎 = 𝑓 ∘𝜎𝜎𝜎 . Then 𝜎𝜎𝜎 and �̃�𝜎𝜎 have the same FFF

𝐸 = 𝐸 , 𝐹 = 𝐹 , 𝐺 = 𝐺 .

Theorem 3.74: Sufficient condition for local isometry

Let𝒮 , 𝒮 be regular surfaces, with charts 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 and �̃�𝜎𝜎 ∶ 𝑈 → 𝒮 .
Assume that 𝜎𝜎𝜎 and �̃�𝜎𝜎 have the same FFF. We have

1. The surfaces 𝜎𝜎𝜎(𝑈 ) and 𝒮 are locally isometric.
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2. A local isometry is given by

𝑓 ∶ 𝜎𝜎𝜎(𝑈 ) → 𝒮 , 𝑓 = �̃�𝜎𝜎 ∘ 𝜎𝜎𝜎−1 .

Example 3.75: Plane and Cylinder are locally isometric

Question. Consider the plane 𝒮 = {𝑥 = 0} and the unit cylinder
𝒮 = {𝑥2 + 𝑦2 = 1}. Define the function

𝑓 ∶ 𝒮 → 𝒮 , 𝑓 (0, 𝑦 , 𝑧) = (cos(𝑦), sin(𝑦), 𝑧) .
Prove that 𝑓 is a local isometry (you may assume 𝑓 smooth).
Solution. The plane 𝒮 is charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (0, 𝑢, 𝑣) , 𝑢, 𝑣 ∈ ℝ .
We already know that 𝜎𝜎𝜎 is regular, with FFF coefficients

𝐸 = 1 , 𝐹 = 0 , 𝐺 = 1 ⟹ ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 .
Define �̃�𝜎𝜎 = 𝑓 ∘ 𝜎𝜎𝜎 . Therefore,

�̃�𝜎𝜎(𝑢, 𝑣) = 𝑓 (0, 𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) .
The FFF of �̃�𝜎𝜎 is

�̃�𝜎𝜎𝑢 = (− sin(𝑢), cos(𝑢), 0) 𝐹 = �̃�𝜎𝜎𝑢 ⋅ �̃�𝜎𝜎 𝑣 = 0
�̃�𝜎𝜎 𝑣 = (0, 0, 1) 𝐺 = �̃�𝜎𝜎 𝑣 ⋅ �̃�𝜎𝜎 𝑣 = 1
𝐸 = �̃�𝜎𝜎𝑢 ⋅ �̃�𝜎𝜎𝑢 = 1 ℱ̃1 = 𝑑𝑢2 + 𝑑𝑣2

Thus, 𝜎𝜎𝜎 and �̃�𝜎𝜎 have the same FFF. Since 𝒜 = {𝜎𝜎𝜎} is an atlas for 𝒮 ,
by Theorem 1.74 we conclude that 𝑓 is a local isometry of 𝒮 into 𝒮 .

Example 3.76: Plane and Cone are locally isometric

Question. Consider the cone without tip

𝒮 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 = 𝑧2 , 𝑧 > 0} ,
and the plane 𝒮 = {𝑧 = 0}.

1. Compute the FFF of the chart of the Cone

𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 , 𝜎𝜎𝜎(𝜌, 𝜃) = (𝜌 cos(𝜃), 𝜌 sin(𝜃), 𝜌) ,
𝑈 = {(𝜌, 𝜃) ∈ ℝ2 ∶ 𝜌 > 0, 𝜃 ∈ (0, 2𝜋)} .

2. Compute the FFF of the chart of the plane

�̃�𝜎𝜎 ∶ 𝑈 → 𝒮 , �̃�𝜎𝜎(𝜌, 𝜃) = (𝑎𝜌 cos(𝑏𝜃), 𝑎𝜌 sin(𝑏𝜃), 0) ,
where 𝑎 > 0 and 𝑏 ∈ (0, 1] are constants.

3. Prove that 𝑓 = �̃�𝜎𝜎 ∘ 𝜎𝜎𝜎−1 is a local isometry between 𝒮 and 𝒮 ,
for suitable coefficients 𝑎, 𝑏.

Solution.

1. As seen in Example 1.71, the coefficients of the FFF of 𝜎𝜎𝜎 are

𝐸 = 2 , 𝐹 = 0 , 𝐺 = 𝜌2 .

2. Note that �̃�𝜎𝜎 is well defined for all (𝜌, 𝜃) ∈ 𝑈 , as

𝜃 ∈ (0, 2𝜋), 𝑏 ∈ (0, 1] ⟹ 𝑏𝜃 ∈ (0, 2𝜋) .

The coefficients of the FFF of �̃�𝜎𝜎 are

�̃�𝜎𝜎𝜌 = 𝑎 (cos(𝑏𝜃), sin(𝑏𝜃), 0) 𝐹 = �̃�𝜎𝜎𝜌 ⋅ �̃�𝜎𝜎 𝜃 = 0
�̃�𝜎𝜎 𝜃 = 𝑎𝑏𝜌 (− sin(𝑏𝜃), cos(𝑏𝜃), 0) 𝐺 = �̃�𝜎𝜎 𝜃 ⋅ �̃�𝜎𝜎 𝜃 = 𝑎2𝑏2𝜌2
𝐸 = �̃�𝜎𝜎𝜌 ⋅ �̃�𝜎𝜎𝜌 = 𝑎2

3. Imposing that 𝐸 = 𝐸, 𝐹 = 𝐹 and 𝐺 = 𝐺, we obtain

𝑎2 = 2, 𝑎2𝑏2 = 1 ⟹ 𝑎 = √2 , 𝑏 = 1
√2

.

Note that 𝑎 > 0 and 0 < 𝑏 < 1, showing that 𝑎, 𝑏 are admissible.
Hence, for 𝑎 = √2 and 𝑏 = 1/√2, the charts 𝜎𝜎𝜎 and �̃�𝜎𝜎 have
the same FFF. By Theorem 1.73, we conclude that 𝒮 and 𝒮 are
locally isometric, with local isometry given by 𝑓 = �̃�𝜎𝜎 ∘ 𝜎𝜎𝜎−1.

3.7 Angle between curves

Definition 3.77: Angle between curves

Let 𝒮 be a regular surface, and 𝛾𝛾𝛾 , ̃𝛾𝛾𝛾 curves on 𝒮 intersecting at

𝛾𝛾𝛾 (𝑡0) = p = ̃𝛾𝛾𝛾 (𝑡0) .
The angle 𝜃 between 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 is

cos(𝜃) = ̇𝛾𝛾𝛾 (𝑡0) ⋅ ̇̃𝛾𝛾𝛾 (𝑡0)
‖ ̇𝛾𝛾𝛾 (𝑡0)‖ ‖ ̇̃𝛾𝛾𝛾 (𝑡0)‖

.

Theorem 3.78: Angle between curves and FFF

Let 𝒮 be a regular surface, 𝜎𝜎𝜎 regular chart at p, and 𝛾𝛾𝛾 , ̃𝛾𝛾𝛾 curves on
𝒮 intersecting at 𝛾𝛾𝛾 (𝑡0) = p = ̃𝛾𝛾𝛾 (𝑡0). There exist smooth functions
𝑢, 𝑣 , �̃�, ̃𝑣 such that

𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) , ̃𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(�̃�(𝑡), ̃𝑣 (𝑡)) .
The angle between 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 is

cos(𝜃) = 𝐸 ̇𝑢 ̇�̃� + 𝐹( ̇𝑢 ̇̃𝑣 + ̇�̃� ̇𝑣 ) + 𝐺 ̇𝑣 ̇̃𝑣
(𝐸 ̇𝑢2 + 2𝐹 ̇𝑢 ̇𝑣 + 𝐺 ̇𝑣2)1/2(𝐸 ̇�̃�2 + 2𝐹 ̇�̃� ̇̃𝑣 + 𝐺 ̇̃𝑣2)1/2

,

with 𝐸, 𝐹 , 𝐺 evaluated at (𝑢(𝑡0), 𝑣(𝑡0)), and ̇𝑢, ̇𝑣 , ̇�̃�, ̇̃𝑣 at 𝑡0.

Example 3.79: Calculation of angle between curves

Question. Let 𝑆 be a surface charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢, 𝑣 , 𝑒𝑢𝑣 ) .
1. Calculate the FFF of 𝜎𝜎𝜎 .
2. Calculate cos(𝜃), where 𝜃 is the angle between the two curves

𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)), 𝑢(𝑡) = 𝑡, 𝑣(𝑡) = 𝑡 ,
̃𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(�̃�(𝑡), ̃𝑣 (𝑡)) , �̃�(𝑡) = 1, ̃𝑣 (𝑡) = 𝑡 .

Solution.

27



1. The coefficients of the FFF are

𝜎𝜎𝜎𝑢 = (1, 0, 𝑒𝑢𝑣 𝑣) 𝐹(𝑢, 𝑣) = 𝑒2𝑢𝑣𝑢𝑣
𝜎𝜎𝜎 𝑣 = (0, 1, 𝑒𝑢𝑣𝑢) 𝐺(𝑢, 𝑣) = 1 + 𝑒2𝑢𝑣𝑢2
𝐸(𝑢, 𝑣) = 1 + 𝑒2𝑢𝑣 𝑣2

2. 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 intersect at 𝛾𝛾𝛾 (1) = ̃𝛾𝛾𝛾 (1) = 𝜎𝜎𝜎(1, 1). We compute

̇𝑢(1) = 1 𝐸(1, 1) = 1 + 𝑒2
̇𝑣 (1) = 1 𝐹(1, 1) = 𝑒2
̇�̃�(1) = 0 𝐺(1, 1) = 1 + 𝑒2
̇̃𝑣 (1) = 1

Therefore, the angle 𝜃 satisfies

cos(𝜃) = 1 + 2𝑒2
√2 + 4𝑒2√1 + 𝑒2

= √
1 + 2𝑒2
2 + 2𝑒2 .

3.8 Conformal maps

Definition 3.80: Conformal map

Let 𝒮 , 𝒮 be regular surfaces, 𝑓 ∶ 𝒮 → 𝒮 local diffeomorphism. We
say that 𝑓 is a conformal map, if for all p ∈ 𝒮

𝜃 = ̃𝜃 , ∀ v,w ∈ 𝑇p𝒮 ,
• 𝜃 is the angle between v and w,
• ̃𝜃 is the angle between 𝑑p𝑓 (v) and 𝑑p𝑓 (w).

In this case, we say that 𝒮 and 𝒮 are conformal.

Proposition 3.81

Local isometries are conformal maps.

Theorem 3.82: Conformal maps and FFF

Let 𝒮 , 𝒮 be regular surfaces, 𝑓 ∶ 𝒮 → 𝒮 a local diffeomorphism.
Equivalently:

1. 𝑓 is a conformal map.

2. Let 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 be regular chart of 𝒮 , and define a chart of 𝒮
as �̃�𝜎𝜎 ∶ 𝑈 → 𝒮 , with �̃�𝜎𝜎 = 𝑓 ∘ 𝜎𝜎𝜎 . Then the FFF of 𝜎𝜎𝜎 and �̃�𝜎𝜎 satisfy

ℱ̃1 = 𝜆(𝑢, 𝑣)ℱ1 , ∀ (𝑢, 𝑣) ∈ 𝑈 ,
for some smooth map 𝜆∶ 𝑈 → ℝ.

Theorem 3.83: Sufficient condition for conformality

Let𝒮 , 𝒮 be regular surfaces, with charts 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 and �̃�𝜎𝜎 ∶ 𝑈 → 𝒮 .
Assume that ℱ̃1 = 𝜆ℱ1 for some 𝜆∶ 𝑈 → ℝ. We have

1. The surfaces 𝜎𝜎𝜎(𝑈 ) and 𝒮 are conformal.
2. A conformal map is given by 𝑓 ∶ 𝜎𝜎𝜎(𝑈 ) → 𝒮 with 𝑓 = �̃�𝜎𝜎 ∘ 𝜎𝜎𝜎−1.

Example 3.84: Stereographic Projection

Question. Consider the unit sphere 𝕊2 = {𝑥2 + 𝑦2 + 𝑧2 = 1} and
define the surface 𝒮 = 𝕊2 ∖ {𝑁 }, where 𝑁 = (0, 0, 1). Consider the
plane 𝒮 = {𝑧 = 0}. The Stereographic Projection is

𝑓 ∶ 𝒮 → 𝒮 , 𝑓 (𝑥, 𝑦 , 𝑧) = ( 𝑥
1 − 𝑧 ,

𝑦
1 − 𝑧 , 0) .

Prove that 𝑓 is a conformal map.
Solution. It is easy to prove that 𝑓 −1 = 𝜎𝜎𝜎 , with

𝜎𝜎𝜎(𝑢, 𝑣) = ( 2𝑢
𝑢2 + 𝑣2 + 1 ,

2𝑣
𝑢2 + 𝑣2 + 1 , 1 −

2
𝑢2 + 𝑣2 + 1) .

It is straightforward to compute that the FFF of 𝜎𝜎𝜎 is

ℱ1 = 𝜆(𝑢, 𝑣)(𝑑𝑢2 + 𝑑𝑣2) , 𝜆(𝑢, 𝑣) = 4
(𝑢2 + 𝑣2 + 1)2 .

Let �̃�𝜎𝜎 = 𝑓 ∘ 𝜎𝜎𝜎 . Since 𝜎𝜎𝜎 = 𝑓 −1, we have that �̃�𝜎𝜎(𝑢, 𝑣) = (𝑢, 𝑣 , 0). As
already computed, the FFF of �̃�𝜎𝜎 is ℱ̃1 = 𝑑𝑢2 + 𝑑𝑣2. Therefore,

ℱ̃1 = 1
𝜆ℱ1 .

Since 𝒜 = {𝜎𝜎𝜎} is an atlas for 𝒮 , by Theorem 3.82 we conclude that
𝑓 is a conformal map.

Definition 3.85: Conformal parametrization

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be regular. We say that 𝜎𝜎𝜎 is a conformal
parametrization if the FFF of 𝜎𝜎𝜎 satisfies

ℱ1 = 𝜆(𝑢, 𝑣)(𝑑𝑢2 + 𝑑𝑣2) ,
for some smooth function 𝜆∶ 𝑈 → ℝ.

Example 3.86: Mercator projection

Question. Prove that the parametrization of 𝕊2 is conformal

𝜎𝜎𝜎(𝑢, 𝑣) ∶= (cos(𝑢) sech(𝑣), sin(𝑢) sech(𝑣), tanh(𝑣)) .
Solution. Recall the identities sech2(𝑣) + tanh2(𝑣) = 1 and

sech(𝑣)′ = − sech(𝑣) tanh(𝑣) , tanh(𝑣)′ = sech2(𝑣) .
The chart 𝜎𝜎𝜎 is a conformal parametrization because the FFF is

�̃�𝜎𝜎𝑢 = sech(𝑣) (− sin(𝑢), cos(𝑢), 0)
�̃�𝜎𝜎 𝑣 = sech(𝑣) (− cos(𝑣) tanh(𝑣), − sin(𝑢) tanh(𝑣), sech(𝑣))
𝐸 = �̃�𝜎𝜎𝑢 ⋅ �̃�𝜎𝜎𝑢 = sech2(𝑣)(cos2(𝑢) + sin2(𝑢)) = sech2(𝑣)
𝐹 = �̃�𝜎𝜎𝑢 ⋅ �̃�𝜎𝜎 𝑣 = 0
𝐺 = �̃�𝜎𝜎 𝑣 ⋅ �̃�𝜎𝜎 𝑣 = sech2(𝑣)(tanh2(𝑣) + sech2(𝑣)) = sech2(𝑣)
ℱ1 = sech2(𝑣) (𝑑𝑢2 + 𝑑𝑣2) .

Theorem 3.87: Conformal parametrizations preserve angles

Let𝜎𝜎𝜎 be a conformal parametrization, and 𝛾𝛾𝛾 1(𝑡), 𝛾𝛾𝛾 2(𝑡) be curves inℝ2
such that ̇𝛾𝛾𝛾 1 (𝑡0) , ̇𝛾𝛾𝛾 2 (𝑡0)make angle 𝜃 . Let ̃𝛾𝛾𝛾 1 = 𝜎𝜎𝜎 ∘𝛾𝛾𝛾 1 and ̃𝛾𝛾𝛾 2 = 𝜎𝜎𝜎 ∘𝛾𝛾𝛾 2.
Then ̇̃𝛾𝛾𝛾 1 (𝑡0) , ̇̃𝛾𝛾𝛾 2 (𝑡0) also make angle 𝜃 .
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3.9 Second fundamental form

Definition 3.88: Second fundamental form of a chart

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be regular, 𝒮 = 𝜎𝜎𝜎(𝑈 ). Define 𝐿,𝑀, 𝑁 ∶ 𝑈 → ℝ
𝐿 ∶= 𝜎𝜎𝜎𝑢𝑢 ⋅ N , 𝑀 ∶= 𝜎𝜎𝜎𝑢𝑣 ⋅ N , 𝑁 ∶= 𝜎𝜎𝜎 𝑣𝑣 ⋅ N ,

where N is the standard unit normal to 𝜎𝜎𝜎 . The second fundamen-
tal form (SFF) of 𝜎𝜎𝜎 is the quadratic form ℱ2 ∶ 𝑇p𝒮 → ℝ

ℱ2(v) = 𝐿 𝑑𝑢2(v) + 2𝑀 𝑑𝑢(v) 𝑑𝑣(v) + 𝑁 𝑑𝑣2(v) , ∀ 𝑣 ∈ 𝑇p𝒮 ,

for all p ∈ 𝜎𝜎𝜎(𝑈 ), with 𝐿,𝑀, 𝑁 evaluated at (𝑢, 𝑣) = 𝜎𝜎𝜎−1(𝑣), and 𝑑𝑢,
𝑑𝑣 the coordinate functions in Definition 1.62.

Example 3.89: SFF of Plane

Question. Let a,p,q ∈ ℝ3, with p, q orthonormal. The plane is
charted by

𝜎𝜎𝜎(𝑢, 𝑣) = a + 𝑢p + 𝑣q , (𝑢, 𝑣) ∈ ℝ2 .
Prove that the SFF of 𝜎𝜎𝜎 is ℱ2 = 0.
Solution. We have that ℱ2 = 0, since

𝜎𝜎𝜎𝑢 = p , 𝜎𝜎𝜎 𝑣 = q , 𝜎𝜎𝜎𝑢𝑢 = 𝜎𝜎𝜎𝑢𝑣 = 𝜎𝜎𝜎 𝑣𝑣 = 000 ,
𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N = 0 , 𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N = 0 , 𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N = 0 .

Example 3.90: SFF of Unit cylinder

Question. Consider the unit cylinder with chart

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) , (𝑢, 𝑣) ∈ (0, 2𝜋) × ℝ .
Prove that the SFF of 𝜎𝜎𝜎 is

ℱ2 = −𝑑𝑢2 .
Solution. We have

𝜎𝜎𝜎𝑢 = (− sin(𝑢), cos(𝑢), 0) N = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

𝜎𝜎𝜎 𝑣 = (0, 0, 1) = (cos(𝑢), sin(𝑢), 0)
𝜎𝜎𝜎𝑢𝑢 = (− cos(𝑢), − sin(𝑢), 0) 𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N = −1
𝜎𝜎𝜎𝑢𝑣 = 𝜎𝜎𝜎 𝑣𝑣 = 000 𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N = 0
𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = (cos(𝑢), sin(𝑢), 0) 𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N = 0
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = 1 ℱ2 = −𝑑𝑢2

Remark 3.91: SFF and reparametrizations

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be regular, and �̃�𝜎𝜎 ∶ 𝑈 → ℝ3 a reparametrization,
with �̃�𝜎𝜎 = 𝜎𝜎𝜎 ∘ Φ and Φ∶ 𝑈 → 𝑈 diffeomorphism. The matrices ℱ2
and ℱ̃2 of the SFF of 𝜎𝜎𝜎 and �̃�𝜎𝜎 are related by

ℱ̃2 = ±(𝐽Φ)𝑇ℱ2𝐽Φ , ℱ2 = ( �̃� 𝑀
𝑀 𝑁 ) , ℱ̃2 ( �̃� 𝑀

𝑀 𝑁 ) ,

where the formula holds with the plus sign if det 𝐽Φ > 0, and with
the minus sign if det 𝐽Φ < 0.

3.10 Gauss and Weingarten maps

Definition 3.92: Gauss map

Let 𝒮 be an oriented surface with standard unit normal N. The
Gauss map of 𝒮 is

𝒢𝒮 ∶ 𝒮 → 𝕊2 , 𝒢𝒮 (p) ∶= N(p) .

Definition 3.93: Weingarten map

Let 𝒮 be an orientable surface with Gauss map 𝒢 ∶ 𝒮 → 𝕊2. The
Weingarten map 𝒲p,𝒮 of 𝒮 at p is

𝒲p,𝒮 ∶ 𝑇p𝒮 → 𝑇p𝒮 , 𝒲p,𝒮 (v) = −𝑑p𝒢(v) .

Lemma 3.94

Let 𝒮 be an orientable surface with Weingarten map 𝒲p,𝒮 , and 𝜎𝜎𝜎 a
regular chart at p. Then

𝒲p,𝒮 (𝜎𝜎𝜎𝑢) = −N𝑢 , 𝒲p,𝒮 (𝜎𝜎𝜎 𝑣 ) = −N𝑣 ,

where 𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 ,N𝑢 ,N𝑣 are evaluated at (𝑢, 𝑣) = 𝜎𝜎𝜎−1(p).

Definition 3.95: SFF of a surface

Let𝒮 be an orientable surface withWeingartenmap𝒲p,𝒮 . The SFF
of 𝒮 at p is the bilinear map

𝐼 𝐼p ∶ 𝑇p𝒮 × 𝑇p𝒮 → ℝ , 𝐼 𝐼p(v,w) ∶= 𝒲p,𝒮 (v) ⋅w .

Theorem 3.96: Matrix of the SFF

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be regular, 𝒮 = 𝜎𝜎𝜎(𝑈 ), and p ∈ 𝜎𝜎𝜎(𝑈 ). Then

𝐼 𝐼p(v,w) = (𝑑𝑢(v), 𝑑𝑣(v)) ( 𝐿 𝑀
𝑀 𝑁 ) (𝑑𝑢(w), 𝑑𝑣(w))𝑇 ,

for all v,w ∈ 𝑇p𝒮 . In particular, it holds

ℱ2(v) = 𝐼 𝐼p(v, v) , ∀ v ∈ 𝑇p𝒮 .

Theorem 3.97: Matrix of Weingarten map

Let 𝒮 be an orientable surface withWeingarten map𝒲p,𝒮 . Let 𝜎𝜎𝜎 be
a regular chart at p. The matrix of theWeingarten map with respect
to the basis {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } of 𝑇p𝒮 is

𝒲 = ℱ −11 ℱ2 ,
where the FFF and SFF are evaluated at (𝑢, 𝑣) = 𝜎𝜎𝜎−1(p).

Remark 3.98: Matrix inverse

A matrix 𝐴 ∈ ℝ2×2 is invertible if and only if det(𝐴) ≠ 0. In such
case the inverse 𝐴−1 is computed via the formula

( 𝑎 𝑏
𝑐 𝑑 )

−1
= 1

det(𝐴) ( 𝑑 −𝑏
−𝑐 𝑎 ) , det(𝐴) = 𝑎𝑑 − 𝑏𝑐 .
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If the matrix is diagonal, then

( 𝜆 0
0 𝜇 )

−1
= ( 1/𝜆 0

0 1/𝜇 ) .

Example 3.99: Weingarten map of Helicoid

Question. The Helicoid is charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢 cos(𝑣), 𝑢 sin(𝑣), 𝜆𝑣) , 𝑢 ∈ ℝ , 𝑣 ∈ (0, 2𝜋) ,
with 𝜆 > 0 constant. Compute the matrix of the Weingarten map.
Solution. We compute all the derivatives of 𝜎𝜎𝜎

𝜎𝜎𝜎𝑢 = (cos(𝑣), sin(𝑣), 0) 𝜎𝜎𝜎𝑢𝑣 = (− sin(𝑣), cos(𝑣), 0)
𝜎𝜎𝜎 𝑣 = (−𝑢 sin(𝑣), 𝑢 cos(𝑣), 𝜆) 𝜎𝜎𝜎 𝑣𝑣 = −𝑢 (cos(𝑣), sin(𝑣), 0)
𝜎𝜎𝜎𝑢𝑢 = (0, 0, 0)

The FFF and its inverse are

𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 1 𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 0
𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 𝑢2 + 𝜆2

ℱ1 = ( 1 0
0 𝑢2 + 𝜆2 ) ℱ −11 = (

1 0
0 1

𝑢2 + 𝜆2
) .

The standard unit normal to 𝜎𝜎𝜎 is

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = (𝜆 sin(𝑣), −𝜆 cos(𝑣), 𝑢)
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = √𝑢2 + 𝜆2

N = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

= 1
√𝑢2 + 𝜆2

(𝜆 sin(𝑣), −𝜆 cos(𝑣), 𝑢) .

The SFF of 𝜎𝜎𝜎 is

𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N = 0 𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N = − 𝜆
√𝑢2 + 𝜆2

𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N = 0

ℱ2 =
⎛
⎜
⎜
⎝

0 − 𝜆
√𝑢2 + 𝜆2

− 𝜆
√𝑢2 + 𝜆2

0

⎞
⎟
⎟
⎠
.

Finally, the matrix of the Weingarten map is

𝒲 = ℱ −11 ℱ2 =
⎛
⎜⎜
⎝

0 − 𝜆
(𝑢2 + 𝜆2)1/2

− 𝜆
(𝑢2 + 𝜆2)3/2 0

⎞
⎟⎟
⎠
.

3.11 Curvatures

Definition 3.100: Gaussian and mean curvature

Let 𝒮 be an orientable surface. Let 𝒲 be the matrix of the Wein-
garten map 𝒲p,𝒮 of 𝒮 at p. We define:

1. The Gaussian curvature of 𝒮 at p is

𝐾 ∶= det(𝒲 ) ,

2. The mean curvature of 𝒮 at p is

𝐻 ∶= 1
2 Tr(𝒲 ) ,

Notation 3.101: Trace of a matrix

The trace of a 2 × 2 matrix is the sum of the diagonal entries.

Proposition 3.102: Formulas for 𝐾 and 𝐻

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart, and 𝒮 = 𝜎𝜎𝜎(𝑈 ). Then

𝐾 = 𝐿𝑁 − 𝑀2
𝐸𝐺 − 𝐹 2 , 𝐻 = 𝐿𝐺 − 2𝑀𝐹 − 𝑁𝐸

2(𝐸𝐺 − 𝐹 2) .

Example 3.103: Curvatures of the Plane

Question. Let a,p,q ∈ ℝ3, with p, q orthonormal. Consider the
plane charted by

𝜎𝜎𝜎(𝑢, 𝑣) = a + p𝑢 + q𝑣 .
1. Compute the matrix of the Weingarten map of 𝜎𝜎𝜎 .
2. Compute the Gaussian and mean curvatures of the plane.

Solution.

1. From Examples 1.68, 1.89, the FFF and SFF of 𝜎𝜎𝜎 are

ℱ1 = ( 1 0
0 1 ) , ℱ2 = ( 0 0

0 0 ) .

Therefore the matrix of the Weingarten map is

𝒲 = ℱ −11 ℱ2 = ( 0 0
0 0 ) .

2. The Gaussian and mean curvatures are

𝐾 = det(𝒲 ) = 0 , 𝐻 = 1
2 Tr(𝒲 ) = 0 .

Example 3.104: Curvatures of the Unit cylinder

Question. Consider the unit cylinder 𝒮 charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) .
1. Compute the matrix of the Weingarten map of 𝜎𝜎𝜎 .
2. Compute the Gaussian and mean curvatures of 𝒮 .

Solution.

1. From Examples 1.65, 3.90, the FFF and SFF of 𝜎𝜎𝜎 are

ℱ1 = ( 1 0
0 1 ) , ℱ2 = ( −1 0

0 0 ) .
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Therefore the matrix of the Weingarten map is

𝒲 = ℱ −11 ℱ2 = ( −1 0
0 0 ) .

2. The Gaussian and mean curvatures are

𝐾 = det(𝒲 ) = 0 , 𝐻 = 1
2 Tr(𝒲 ) = −1

2 .

Theorem 3.105: Eigenvalues of Weingarten map

Let 𝒮 be an orientable surface and 𝜎𝜎𝜎 a regular chart at p. Let 𝒲 be
the matrix of the Weingarten map 𝒲p,𝒮 with respect to the basis
{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } of 𝑇p𝒮 . Then

1. There exist scalars 𝜅1, 𝜅2 ∈ ℝ and an orthonormal basis {t1, t2}
of 𝑇p𝒮 such that

𝒲p,𝒮 (t1) = 𝜅1t1 , 𝒲p,𝒮 (t2) = 𝜅2t2 .

2. Let 𝜆1, 𝜆2, 𝜇1, 𝜇2 ∈ ℝ be such that

t1 = 𝜆1𝜎𝜎𝜎𝑢 + 𝜇1𝜎𝜎𝜎 𝑣 , t2 = 𝜆2𝜎𝜎𝜎𝑢 + 𝜇2𝜎𝜎𝜎 𝑣 .
Denote x1 = (𝜆1, 𝜇1) and x2 = (𝜆2, 𝜇2). Then 𝜅1, 𝜅2 are eingen-
values of 𝒲 of eigenvectors x1 and x2

𝒲 x1 = 𝜅1x1 , 𝒲 x2 = 𝜅2x2 .
In particular, the matrix 𝒲 is diagonalizable, with

𝒲 = 𝑃−1𝐷𝑃, 𝐷 = ( 𝜅1 0
0 𝜅2 ) , 𝑃 = ( 𝜆1 𝜆2

𝜇1 𝜇2 ) .

Definition 3.106: Principal curvatures and vectors

Let 𝒮 be an orientable surface. Let 𝒲p,𝒮 the Weingarten map of 𝒮
at p. We define:

1. The principal curvatures of 𝒮 at p are the eigenvalues 𝜅1, 𝜅2
of 𝒲p,𝒮 .

2. The principal vectors corresponding to 𝜅1 and 𝜅2 are the
eigenvectors t1, t2 of 𝒲p,𝒮 .

Remark 3.107: Computing principal curvatures and vectors

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart and 𝒮 = 𝜎𝜎𝜎(𝑈 ).
1. Compute the FFF and SFF of 𝜎𝜎𝜎 , and the matrix of the Wein-

garten map
𝒲 = ℱ −11 ℱ2 .

2. Compute the eigenvalues of 𝒲 , by solving for 𝜆 the equation

det(𝒲 − 𝜆𝐼 ) = 0 .
The two solutions are the principal curvatures 𝜅1 and 𝜅2.

3. Find scalars 𝜆, 𝜇 which solve the linear system

(𝒲 − 𝜅𝑖𝐼 ) ( 𝜆
𝜇 ) = 0 .

The solution(s) gives the eigenvector(s) of 𝒲
x𝑖 = (𝜆, 𝜇)

corresponding to the eigenvalue 𝜅𝑖.
4. The principal vector(s) associated to 𝜅𝑖 is

t𝑖 = 𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣

Remark 3.108: The case of 𝒲 diagonal

Let𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart and𝒮 = 𝜎𝜎𝜎(𝑈 ). Assume thematrix
of the Weingarten map is diagonal

𝒲 = ( 𝜅1 0
0 𝜅2 ) .

Then, the eigenvalues of 𝒲 are 𝜅1 and 𝜅2, with eigenvectors

x1 = (1, 0) , x2 = (0, 1) .
Therefore 𝜅1, 𝜅2 are the principal curvatures of 𝒮 , with principal
vectors given by

t1 = 𝜎𝜎𝜎𝑢 , t2 = 𝜎𝜎𝜎 𝑣 .

Proposition 3.109: Relationships between curvatures

Let 𝒮 be an orientable surface. Then

𝐾 = 𝜅1𝜅2 , 𝐻 = 𝜅1 + 𝜅2
2 ,

𝑘𝑖 = 𝐻 ± √𝐻 2 − 𝐾 .

Example 3.110: Principal curvatures of Unit Cylinder

Question. Consider the unit cylinder charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) .
Compute the principal curvature and principal vectors.
Solution. By Example 3.104, the matrix of the Weingarten map is

𝒲 = ( −1 0
0 0 ) .

Since 𝒲 is diagonal, the eigenvalues are the diagonal entries of 𝒲
and the eigenvectors are

x1 = (1, 0), x2 = (0, 1) .
Therefore, the principal curvatures and principal vectors are

𝜅1 = −1 , 𝜅2 = 0 ,
t1 = 𝜎𝜎𝜎𝑢 = (− sin(𝑢), cos(𝑣), 0) ,
t2 = 𝜎𝜎𝜎 𝑣 = (0, 0, 1) .
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Example 3.111: Curvatures of Sphere

Question. Consider the chart for the sphere

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢) cos(𝑣), sin(𝑢) cos(𝑣), sin(𝑣)) ,
where 𝑢 ∈ (0, 2𝜋), 𝑣 ∈ (−𝜋/2, 𝜋/2). Prove that

ℱ1 = ℱ2 = ( cos2(𝑣) 0
0 1 ) , 𝒲 = ( 1 0

0 1 ) ,
𝐾 = 𝐻 = 𝜅1 = 𝜅2 = 1 , t1 = 𝜎𝜎𝜎𝑢 , t2 = 𝜎𝜎𝜎 𝑣 .

Solution. Compute the FFF of 𝜎𝜎𝜎
𝜎𝜎𝜎𝑢 = (− sin(𝑢) cos(𝑣), cos(𝑢) cos(𝑣), 0)
𝜎𝜎𝜎 𝑣 = (− cos(𝑢) sin(𝑣), − sin(𝑢) sin(𝑣), cos(𝑣))
𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = cos2(𝑣)
𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 0
𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 1

ℱ1 = ( cos2(𝑣) 0
0 1 ) .

Moreover

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = (cos(𝑢) cos2(𝑣), sin(𝑢) cos2(𝑣), cos(𝑣) sin(𝑣))
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = | cos(𝑣)| = cos(𝑣) ,

where we used that cos(𝑣) > 0 since 𝑣 ∈ (−𝜋/2, 𝜋/2). Therefore,
N = (cos(𝑢) cos(𝑣), sin(𝑢) cos(𝑣), sin(𝑣))

𝜎𝜎𝜎𝑢𝑢 = (− cos(𝑢) cos(𝑣), − sin(𝑢) cos(𝑣), 0)
𝜎𝜎𝜎𝑢𝑣 = (sin(𝑢) sin(𝑣), − cos(𝑢) sin(𝑣), 0)
𝜎𝜎𝜎 𝑣𝑣 = (− cos(𝑢) cos(𝑣), − sin(𝑢) cos(𝑣), − sin(𝑣))
𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N = cos2(𝑣)
𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N = 0
𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N = 1

Hence, the SFF and matrix of the Weingarten map are

ℱ2 = ( cos2(𝑣) 0
0 1 ) , 𝒲 = ℱ −11 ℱ2 = ( 1 0

0 1 ) .

Since 𝒲 is diagonal, the principal curvatures and vectors are

𝜅1 = 𝜅2 = 1 , t1 = 𝜎𝜎𝜎𝑢 , t2 = 𝜎𝜎𝜎 𝑣 .
Finally, the mean and Gaussian curvatures are

𝐻 = 𝜅1 + 𝜅2
2 = 1 , 𝐾 = 𝜅1𝜅2 = 1 .

3.12 Normal and Geodesic curvatures

Definition 3.112: Darboux frame

Let 𝒮 be a regular surface, 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 a unit-speed curve. The
Darboux frame of 𝛾𝛾𝛾 at 𝑡 is the triple

{ ̇𝛾𝛾𝛾 ,N,N × ̇𝛾𝛾𝛾 } ,
where 𝛾𝛾𝛾 is evaluated at 𝑡 , and N is the standard unit normal to 𝒮 ,
evaluated at p = 𝛾𝛾𝛾(𝑡).

Proposition 3.113: Darboux frame is orthonormal basis

Let 𝒮 be a regular surface, 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 a unit-speed curve. The
Darboux frame is an orthornormal basis of ℝ3 for all 𝑡 ∈ (𝑎, 𝑏).

Proposition 3.114: Coefficients of ̈𝛾𝛾𝛾 in the Darboux frame

Let 𝒮 be a regular surface, 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 a unit-speed curve. Then

̈𝛾𝛾𝛾 = 𝜅𝑛N + 𝜅𝑔 (N × ̇𝛾𝛾𝛾 ) ,
whereN is evaluated at p ∶= 𝛾𝛾𝛾 (𝑡) and 𝜅𝑛 , 𝜅𝑔 are scalars depedent on
p. Moreover

𝜅𝑛 = ̈𝛾𝛾𝛾 ⋅ N , 𝜅𝑔 = ̈𝛾𝛾𝛾 ⋅ (N × ̇𝛾𝛾𝛾 ) ,
𝜅2 = 𝜅2𝑛 + 𝜅2𝑔 ,

𝜅𝑛 = 𝜅 cos(𝜙) , 𝜅𝑔 = ±𝜅 sin(𝜙) ,
where 𝜅 is the curvature of 𝛾𝛾𝛾 , and 𝜙 is the angle between N and n,
the principal unit normal of 𝛾𝛾𝛾 .

Definition 3.115: Normal and geodesic curvatures

Let 𝒮 be regular and 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 a unit-speed curve. Let N bet
the standard unit normal to 𝒮 .

1. The normal curvature of 𝛾𝛾𝛾 is

𝜅𝑛 = ̈𝛾𝛾𝛾 ⋅ N ,

2. The geodesic curvature of 𝛾𝛾𝛾 is

𝜅𝑔 = ̈𝛾𝛾𝛾 ⋅ (N × ̇𝛾𝛾𝛾 ) .

Theorem 3.116: Computing 𝜅𝑛 with SFF

Let 𝒮 be a regular surface and 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 a unit-speed curve.
Denote p ∶= 𝛾𝛾𝛾 (𝑡). We have:

1. The normal curvature 𝜅𝑛 satisfies

𝜅𝑛 = 𝐼 𝐼p( ̇𝛾𝛾𝛾 , ̇𝛾𝛾𝛾 ) .

2. Let 𝜎𝜎𝜎 be a chart for 𝒮 at p = 𝛾𝛾𝛾(𝑡). Then
𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡))

for some smooth functions 𝑢, 𝑣 ∶ (𝑎, 𝑏) → ℝ, and
𝜅𝑛 = 𝐿 ̇𝑢2 + 2𝑀 ̇𝑢 ̇𝑣 + 𝑁 ̇𝑣2 ,

where 𝐿,𝑀, 𝑁 are evaluated at (𝑢(𝑡), 𝑣(𝑡)), and ̇𝑢, ̇𝑣 at 𝑡 .
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Example 3.117: Curves on the sphere

Question. Consider the unit sphere 𝕊2 with chart

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢) cos(𝑣), sin(𝑢) cos(𝑣), sin(𝑣)) .
Show that, for all unit-speed curves on 𝕊2,

𝜅𝑛(𝑡) = 1 .
Solution. Let 𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) be a unit-speed curve on 𝕊2. Dif-
ferentiating, we get

̇𝛾𝛾𝛾 (𝑡) = 𝑑
𝑑𝑡 (cos(𝑢(𝑡)) cos(𝑣(𝑡)), sin(𝑢(𝑡)) cos(𝑣(𝑡)), sin(𝑣(𝑡)))

= (− ̇𝑢 sin(𝑢) cos(𝑣) − ̇𝑣 cos(𝑢) sin(𝑣),
̇𝑢 cos(𝑢) cos(𝑣) − ̇𝑣 sin(𝑢) sin(𝑣),
̇𝑣 cos(𝑣))

‖ ̇𝛾𝛾𝛾 (𝑡)‖2 = cos2(𝑣) ̇𝑢2 + ̇𝑣2 .
Since 𝛾𝛾𝛾 is unit-speed, we have ‖ ̇𝛾𝛾𝛾 ‖ = 1. Therefore,

cos2(𝑣) ̇𝑢2 + ̇𝑣2 = 1 .
By Example 3.111, the coefficients of the SFF of 𝜎𝜎𝜎 are

𝐿 = cos2(𝑣), 𝑀 = 0, 𝑁 = 1 .
By Theorem 3.116, the normal curvature of 𝛾𝛾𝛾 is

𝜅𝑛 = 𝐿 ̇𝑢2 + 2𝑀 ̇𝑢 ̇𝑣 + 𝑁 ̇𝑣2 = cos2(𝑣) ̇𝑢2 + ̇𝑣2 = 1 .

Theorem 3.118: Euler’s Theorem

Let 𝒮 be a regular surface with principal curvatures 𝜅1, 𝜅2 and prin-
cipal vectors t1, t2. Let 𝛾𝛾𝛾 be a unit-speed curve on 𝒮 . The normal
curvature of 𝛾𝛾𝛾 is given by

𝜅𝑛 = 𝜅1 cos2(𝜃) + 𝜅2 sin2(𝜃) ,
where 𝜃 is the angle between ̇𝛾𝛾𝛾 and t1.

Example 3.119: Curves on the sphere (again)

Question. Same question as in Example 3.117.
Solution. By Example 3.111, the principal curvatures of the unit
sphere are 𝜅1 = 𝜅2 = 1. By Euler’s Theorem, for any unit-speed
curve 𝛾𝛾𝛾 on the sphere we have

𝜅𝑛 = 𝜅1 cos2(𝜃) + 𝜅2 sin2(𝜃) = cos2(𝜃) + sin2(𝜃) = 1 .

Definition 3.120: 𝜅𝑛 and 𝜅𝑔 for regular 𝛾𝛾𝛾

Let 𝒮 be regular, and 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 a regular curve. Let ̃𝛾𝛾𝛾 be a
unit-speed reparametrization of 𝛾𝛾𝛾 , with

𝛾𝛾𝛾 = ̃𝛾𝛾𝛾 ∘ 𝜙 , 𝜙 ∶ (𝑎, 𝑏) → (�̃�, �̃�) .
Let �̃�𝑛 and �̃�𝑔 be the normal and geodesic curvatures of ̃𝛾𝛾𝛾 . The nor-
mal and geodesic curvatures of 𝛾𝛾𝛾 are

𝜅𝑛(𝑡) = �̃�𝑛(𝜙(𝑡)) , 𝜅𝑔(𝑡) = �̃�𝑔(𝜙(𝑡)) .

Theorem 3.121: Formulas for 𝜅𝑛 and 𝜅𝑔

Let 𝒮 be regular, and 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 a regular curve.

1. The normal and geodesic curvatures of 𝛾𝛾𝛾 are given by

𝜅𝑛 =
̈𝛾𝛾𝛾 ⋅ N
‖ ̇𝛾𝛾𝛾 ‖2

, 𝜅𝑔 = ̈𝛾𝛾𝛾 ⋅ (N × ̇𝛾𝛾𝛾 )
‖ ̇𝛾𝛾𝛾 ‖3

.

2. Denote by 𝜅 the curvature of 𝛾𝛾𝛾 . It holds
𝜅2 = 𝜅2𝑛 + 𝜅2𝑔 .

3. Let 𝜎𝜎𝜎 be a chart for 𝒮 at p = 𝛾𝛾𝛾(𝑡). Then
𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡))

for some smooth functions 𝑢, 𝑣 ∶ (𝑎, 𝑏) → ℝ, and

𝜅𝑛 =
𝐼 𝐼p( ̇𝛾𝛾𝛾 , ̇𝛾𝛾𝛾 )
𝐼p( ̇𝛾𝛾𝛾 , ̇𝛾𝛾𝛾 ) = 𝐿 ̇𝑢2 + 2𝑀 ̇𝑢 ̇𝑣 + 𝑁 ̇𝑣2

𝐸 ̇𝑢2 + 2𝐹 ̇𝑢 ̇𝑣 + 𝐺 ̇𝑣2 ,

with 𝐸, 𝐹 , 𝐺, 𝐿,𝑀, 𝑁 evaluated at (𝑢(𝑡), 𝑣(𝑡)), and ̇𝑢, ̇𝑣 at 𝑡 .

Example 3.122: Calculation of normal and geodesic curvatures

Question. For 𝑣 ≠ 0 and 𝑡 ≠ 0, consider the surface chart and curve

𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢, 𝑣 , 𝑢𝑣 ) , 𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑡2, 𝑡) .

1. Prove that 𝜎𝜎𝜎 is regular.
2. Compute the principal unit normal to 𝜎𝜎𝜎 .
3. Prove that 𝛾𝛾𝛾 is regular.
4. Compute the normal and geodesic curvatures of 𝛾𝛾𝛾 .
5. Compute 𝜅, the curvature of 𝛾𝛾𝛾 . Verify that

𝜅2 = 𝜅2𝑛 + 𝜅2𝑔 .
Solution.

1. The chart 𝜎𝜎𝜎 is regular because

𝜎𝜎𝜎𝑢 = (1, 0, 1𝑣 ) , 𝜎𝜎𝜎 𝑣 = (0, 1, − 𝑢
𝑣2 )

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = (−1
𝑣 ,

𝑢
𝑣2 , 1) ≠ 000

2. The principal unit normal is

‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ =
(𝑢2 + 𝑣2 + 𝑣4)1/2

𝑣2

N = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

= (−𝑣, 𝑢, 𝑣2)
(𝑢2 + 𝑣2 + 𝑣4)1/2

.

3. The curve 𝛾𝛾𝛾 is regular because

𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑡2, 𝑡) = (𝑡2, 𝑡 , 𝑡)
̇𝛾𝛾𝛾 (𝑡) = (2𝑡, 1, 1) ≠ 000
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4. Compute the following quantities

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = 21/2 (2𝑡2 + 1)1/2 ̈𝛾𝛾𝛾 ⋅ N = − 2
(2𝑡2 + 1)1/2

̈𝛾𝛾𝛾 (𝑡) = (2, 0, 0) N × ̇𝛾𝛾𝛾 = (1 + 2𝑡2)1/2 (0, 1, −1)
N(𝑡2, 𝑡) = (−1, 𝑡, 𝑡)

(2𝑡2 + 1)1/2
̈𝛾𝛾𝛾 ⋅ (N × ̇𝛾𝛾𝛾 ) = 0

The normal and geodesic curvatures are

𝜅𝑛 =
̈𝛾𝛾𝛾 ⋅ N
‖ ̇𝛾𝛾𝛾 ‖2

= − 1
(2𝑡2 + 1)3/2 ,

𝜅𝑔 = ̈𝛾𝛾𝛾 ⋅ (N × ̇𝛾𝛾𝛾 )
‖ ̇𝛾𝛾𝛾 ‖3

= 0 .

5. The curvature of 𝛾𝛾𝛾 is

̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 = (0, 2, −2) , ‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ = 23/2

𝜅 = ‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖
‖ ̇𝛾𝛾𝛾 ‖3

= 1
(2𝑡2 + 1)3/2

Thus 𝜅 = −𝜅𝑛 . Since 𝜅𝑔 = 0, we conclude that 𝜅2 = 𝜅2𝑛 + 𝜅2𝑔 .

3.13 Local shape of a surface

Theorem 3.123: Local structure of surfaces

Let𝒮 be a regular surface and p ∈ 𝒮 . In the vicinity of p, the surface
𝒮 is approximated by the quadric surface of equation

𝑧 = 1
2 (𝑥2𝜅1(p) + 𝑦2𝜅2(p)) ,

where 𝜅1(p), 𝜅2(p) are the principal curvatures of 𝒮 at p.

Definition 3.124: Local shape types

Let 𝒮 be a regular surface, with 𝜅1(p) and 𝜅2(p) the principal cur-
vatures at p. The point p is

• Elliptic if

𝜅1(p) > 0 , 𝜅2(p) > 0 or 𝜅1(p) < 0 , 𝜅2(p) < 0

• Hyperbolic if

𝜅1(p) < 0 < 𝜅2(p) or 𝜅2(p) < 0 < 𝜅1(p)

• Parabolic if

𝜅1(p) = 0 , 𝜅2(p) ≠ 0 or 𝜅2(p) ≠ 0, 𝜅1(p) = 0

• Planar if
𝜅1(p) = 𝜅2(p) = 0

Proposition 3.125: Gaussian curvature and local shape

Let 𝒮 be a regular surface, with 𝐾(p) the Gaussian curvature at p.
The point p is

• Elliptic if 𝐾(p) > 0,
• Hyperbolic if 𝐾(p) < 0,
• Parabolic or Planar if 𝐾(p) = 0.

Example 3.126: Analysis of local shape

Question. Consider the surface chart

𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢 − 𝑣, 𝑢 + 𝑣, 𝑢2 + 𝑣2) .
1. Compute the first fundamental form of 𝜎𝜎𝜎 .
2. Compute the second fundamental form of 𝜎𝜎𝜎 .
3. Compute the matrix of the Weingarten map.
4. Show that p = 𝜎𝜎𝜎(1, 0) is an elliptic point.
5. Can there be points which are not elliptic?

Solution.

1. The FFF of 𝜎𝜎𝜎 is

𝜎𝜎𝜎𝑢 = (1, 1, 2𝑢) 𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 4𝑢𝑣
𝜎𝜎𝜎 𝑣 = (−1, 1, 2𝑣) 𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 2(1 + 2𝑣2)

𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 2(1 + 2𝑢2) ℱ1 = 2 ( 1 + 2𝑢2 2𝑢𝑣
2𝑢𝑣 1 + 2𝑣2 )

2. The standard unit normal is

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = 2(𝑣 − 𝑢, −𝑢 − 𝑣, 1)
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = 2 (1 + 2𝑢2 + 2𝑣2)

1
2

N = (𝑣 − 𝑢, −𝑢 − 𝑣, 1)
(1 + 2𝑢2 + 2𝑣2)

1
2

The SFF of 𝜎𝜎𝜎 is

𝜎𝜎𝜎𝑢𝑢 = (0, 0, 2) 𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N = 2 (1 + 2𝑢2 + 2𝑣2)−
1
2

𝜎𝜎𝜎𝑢𝑣 = (0, 0, 0) 𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N = 0
𝜎𝜎𝜎 𝑣𝑣 = (0, 0, 2) 𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N = 2 (1 + 2𝑢2 + 2𝑣2)−

1
2

ℱ2 = (1 + 2𝑢2 + 2𝑣2)−
1
2 ( 1 0

0 1 ) .

3. The inverse of ℱ1 is

ℱ −11 = 1
det(ℱ1)

( 𝐺 −𝐹
−𝐹 𝐸 )

= 1
2(1 + 2𝑢2 + 2𝑣2) ( 1 + 2𝑣2 −2𝑢𝑣

−2𝑢𝑣 1 + 2𝑢2 ) .

The matrix of the Weingarten map is

𝒲 = ℱ −11 ℱ2

= 1
(1 + 2𝑢2 + 2𝑣2) 32

( 1 + 2𝑣2 −2𝑢𝑣
−2𝑢𝑣 1 + 2𝑢2 ) .
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4. For 𝑢 = 1 and 𝑣 = 0 we obtain

𝒲 = 1
3 3
2
( 1 0

0 3 ) = ( 3− 3
2 0

0 3− 1
2
) .

Therefore the principal curvatures at p are

𝜅1(p) = 3− 3
2 > 0 , 𝜅2(p) = 3− 1

2 > 0 .
Therefore p is an elliptic point.

5. No. This is because the Gaussian curvature is

𝐾 = det(𝒲 ) = 1
(1 + 2𝑢2 + 2𝑣2)2 > 0 .

By Proposition 3.125 we conclude that every point is elliptic.

3.14 Umbilical points

Definition 3.127: Umbilical point

Let 𝒮 be a regular surface, with 𝜅1(p) and 𝜅2(p) the principal cur-
vatures at p. We say that p is an umbilical point if

𝜅1(p) = 𝜅2(p) .

Theorem 3.128: Structure theorem at umbilics

Let 𝒮 be a regular surface such that every point p ∈ 𝒮 is umbilic.
Then 𝒮 is an open subset of plane or a sphere.

Proposition 3.129: Criterion for umbilics

Let 𝒮 be a regular surface. The point p is umbilical if and only if

𝐻 2(p) = 𝐾(p) .
In particular, p cannot be umbilical if

𝐾(p) < 0 .

Proposition 3.130: Chart criterion for umbilics

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart and 𝒮 = 𝜎𝜎𝜎(𝑈 ). A point p is
umbilic if and only if there exists a scalar 𝜅 such that

ℱ2 = 𝜅ℱ1 .

Example 3.131: Plane and Sphere

1. If the plane is charted as in Example 3.103, the FFF and SFF are

ℱ1 = ( 1 0
0 1 ) , ℱ2 = ( 0 0

0 0 ) .

Therefore ℱ2 = 𝜅ℱ1 with 𝜅 = 0, and all points are umbilical.

2. If the sphere is charted as in Example 3.111, the FFF and SFF are

ℱ1 = ℱ2 = ( cos2(𝑣) 0
0 1 ) .

Since ℱ2 = ℱ1, all points on the sphere are umbilical.

Remark 3.132: How to find umbilics

Condition ℱ2 = 𝜅ℱ1 is equivalent to

(𝐸, 𝐹 , 𝐺) × (𝐿,𝑀, 𝑁 ) = 000 .
In practice, umbilics can be found by solving the above equations.
Common factors may be discarded, if convenient.

Example 3.133: Local shape of the Monkey Saddle

Question. Consider the Monkey Saddle surface 𝒮 described by

𝑧 = 𝑥3 − 3𝑥𝑦2 .
1. Compute the Gaussian curvature of 𝒮 .
2. Does 𝒮 contain any hyperbolic point?
3. Prove that the origin is the only umbilical point.

Solution. The Monkey Saddle is charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢, 𝑣 , 𝑢3 − 3𝑢𝑣2) .
The FFF of 𝜎𝜎𝜎 is

𝜎𝜎𝜎𝑢 = (1, 0, 3(𝑢2 − 𝑣2)) 𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = −18𝑢𝑣(𝑢2 − 𝑣2)
𝜎𝜎𝜎 𝑣 = (0, 1, −6𝑢𝑣) 𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 1 + 36𝑢2𝑣2
𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 1 + 9(𝑢2 − 𝑣2)2

The SFF of 𝜎𝜎𝜎 is

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = (−3(𝑢2 − 𝑣2), 6𝑢𝑣 , 1)
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = 1 + 36𝑢2𝑣2 + 9(𝑢2 − 𝑣2)2

= 1 + 9𝑢4 + 9𝑣4 + 18𝑢2𝑣2
= 1 + 9(𝑢2 + 𝑣2)2

N = (−3(𝑢2 − 𝑣2), 6𝑢𝑣 , 1)
√1 + 9(𝑢2 + 𝑣2)2

𝜎𝜎𝜎𝑢𝑢 = (0, 0, 6𝑢)
𝜎𝜎𝜎𝑢𝑣 = (0, 0, −6𝑣)
𝜎𝜎𝜎 𝑣𝑣 = (0, 0, −6𝑢)
𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N = 6𝑢

√1 + 9(𝑢2 + 𝑣2)2
𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N = −6𝑣

√1 + 9(𝑢2 + 𝑣2)2
𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N = 6𝑢

√1 + 9(𝑢2 + 𝑣2)2
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1. We have that

𝐸𝐺 − 𝐹 2 = (1 + 9(𝑢2 − 𝑣2)2)(1 + 36𝑢2𝑣2) − (−18𝑢𝑣(𝑢2 − 𝑣2))2
= 1 + 36𝑢2𝑣2 + 9(𝑢2 − 𝑣2)2
= 1 + 9𝑢4 + 9𝑣4 + 18𝑢2𝑣2
= 1 + 9(𝑢2 + 𝑣2)2

𝐿𝑁 − 𝑀2 = − 36(𝑢2 + 𝑣2)
1 + 9(𝑢2 + 𝑣2)2

Therefore the Gaussian curvature is

𝐾 = 𝐿𝑁 − 𝑀2
𝐸𝐺 − 𝐹 2 = − 36(𝑢2 + 𝑣2)

[1 + 9(𝑢2 + 𝑣2)2]2 .

2. Note that
𝐾 < 0 , ∀ (𝑢, 𝑣) ≠ (0, 0) .

By Proposition 3.125, we conclude that all the points outside of
the origin are hyperbolic.

3. Since 𝐾 < 0 everywhere except at the origin, Proposition 3.129
implies that points outside the origin cannot be umbilic. At
(0, 0), we have

ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 , ℱ2 = 0 .
Therefore ℱ2 is a multiple of ℱ1, and by Proposition 3.130 we
conclude that (0, 0) is an umbilical point. Note: the matrix of
the Weingarten map is 𝒲 = ℱ −11 ℱ2 = 0. Therefore the prin-
cipal curvatures are 𝜅1 = 𝜅2 = 0, showing that (0, 0) is a planar
point.

Figure 3.1: The Monkey Saddle surface 𝑧 = 𝑥3 − 3𝑥𝑦2.

Good Luck with the Exam!
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