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Revision Guide

Revision Guide for the Exam of the module Differential Geometry
661955 2024/25 at the University of Hull. If you have any question or
find any typo, please email me at

S.Fanzon@hull.ac.uk
Full lenght Lecture Notes of the module available at

silviofanzon.com/2024-Differential-Geometry-Notes

Recommended revision strategy

Make sure you are very comfortable with:

1. The Definitions, Theorems, Proofs, and Examples contained in this
Revision Guide

2. The Homework questions

3. The 2022/23 and 2023/24 Exam Papers questions.

4. The Checklist below

Checklist

You should be comfortable with the following topics/taks:

Curves

+ Regularity of curves

« Computing the length of a curve

« Computing arc-length function and arc-length reparametrization

« Calculating the curvature and torsion of unit-speed curves from the
definitions

« Calculating the curvature and torsion of (possibly not unit-speed)
curves from the formulae

« Calculating the Frenet frame of a unit-speed curve from the defini-
tions

» Calculating the Frenet frame of a (possibly not unit-speed) unit-
speed curve from the formulas

« Applying the Fundamental Theorem of Space Curves to determine
if two curves coincide, up to a ridig motion

« Proving that a curve is contained in a plane, and computing the
equation of such plane

« Proving that a curve is part of a circle

Topology:

« Proving that a given collection of sets is a topology

« Proving that a given set is open / closed

« Proving that a given topology is discrete

« Comparing two topologies, and determining which one is finer

« Studying convergent sequences in topological space

« Proving that a given set with a distance function is a metric space

« Studying the topology induced by the metric

« Studying convergent sequences in metric space

« Proving that a topological space is Hausdorff

« Proving that a given function between topological spaces is contin-
uous

« Studying the subspace topology of a given subset of a topological
space

« Showing that a given topological space is connected / path-
connected

« Proving that two given topological spaces are not homeomorphic,
by making use of connectedness arguments

Surfaces:

« Regularity of surface charts

« Computing reparametrizations of surface charts

« Calculating the standard unit normal of a surface chart

« Given a surface chart, compute a basis and the equation of the tan-
gent plane

« Calculating the differential of a smooth function between surfaces

« Proving that a given level surface is regular, and computing its tan-
gent plane

« Proving that a given surface is ruled

« Calculating the first fundamental form of a surface chart

« Proving that a given map is a local isometry / conformal

« Prove that a given parametrization is conformal

« Calculating length and angles of curves on surfaces

« Calculating the second fundamental form of a surface chart

« Calculating the matrix of the Weingarten map, the principal curva-
tures and vectors of a surface chart

« Calculating Gaussian and mean curvature of a surface chart

« Calculating normal and geodesic curvature of a unit-speed curve on
a surface

« Calculating the normal and geodesic curvature of a (possibly not
unit-speed) curve on a surface from the formulae

« Classifying surface points as elliptic, parabolic, hyperbolic, planar,
umbilical
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1 Curves

Definition 1.1: Length of a curve Proof
The length of the curvey : (a,b) — R? is Since y is unit-speed, we have y -y = 1. Differentiating both sides,
' we get the thesis:
b
= v d,.. .\ .o -
1) = [ el du. 0=dG- =y irrr=2
Example 1.2: Length of the Helix Definition 1.7: Reparametrization
Question. Compute the length of the Helix Let y : (a,b) — R3. A reparametrization of y is a curve

Y : (@ b) > R such that
1O =y(@@), vie@b),

for ¢: (a,b) — (a,b) diffeomorphism. We call both ¢ and ¢!
y(t) = (=Rsin(?), R cos(t), H) ly®l = VR? + H? reparametrization maps.

Y@ = (Rcos(t), Rsin(t), Ht), t€(0,2x).

Solution. We compute

2w
L) = L @] du = 22RE + H?

Definition 1.8: Unit-speed reparametrization

Definition 1.3: Arc-Length of a curve Lety: (a,b) - R A unit-speed reparametrization of y is a
reparametrization y : (,b) — R® which is unit-speed, that is,

The arc-length alongy : (a,b) — R3 from ¢, to t is o|=1, vie@ B

t
st @b R, s()= L W @ldu.

Definition 1.9: Regular curve

. 3. .
Example 1.4: Arc-length of Logarithmic Spiral Acurvey : (a,b) - R is regular if

y(H)| =0, vte(ab
Question. Compute the arc-length of r®l (a.b)

y(®) = (e cos(t), e sin(t), 0). Theorem 1.10: Existence of unit-speed reparametrization
Solution. The arc-length starting from ¢, is Lety be a curve. They are equivalent:
7 (&) = e (k cos(t) — sin(t), k sin(t) + cos(t), 0) 1 y is regular,
||Y(t)||2 = (K + 1)e?kt 2. Y admits unit-speed reparametrization.
! K +1
s(t) = J Iyl dr = T(ekt — eko). Theorem 1.11: Characterization of unit-speed reparametrizations
0

Lety : (a,b) — R® be a regular curve. Lety : (4,b) — R> be a

Definition 1.5: Unit-speed curve reparametrization of y, that is,
Acurvey : (a,b) — R? is unit-speed if y®) =y@), Vvte(ab)
Ol =1, Vte(ab). for some diffeomorphism ¢ : (a,b) — (a, b). We have

1. If'y is unit-speed, there exists ¢ € R such that
Proposition 1.6

o) = +s@t) +c, Vte(ab). (1.1)
Lety : (a,b) — R® be unit-speed. Then
2. If ¢ is given by (1.1), then y is unit-speed.

Y- vy=0, vte(ab).




Definition 1.12: Arc-length reparametrization

Lety be regular. The arc-length reparametrization of y is

y=yes !,

with s! inverse of the arc-length function of y.

Example 1.13: Reparametrization by arc-length

Question. Consider the curve
y(@) = (5cos(t), 5sin(t), 12t) .

Prove that y is regular, and reparametrize it by arc-length.
Solution. y is regular because

y(@) = (=5sin(?), 5 cos(t), 12), ly®l =13=0

The arc-length of y starting from t, = 0, and its inverse, are

t
o) = L Pl de=13t, 1=,

The arc-length reparametrization of y is

y(s) =y(t(s)) = <5 cos (1—33> ,5sin <%) , %s) .

Remark 1.17: Computing curvature of regular y

1. Compute the arc-length s(t) of y and its inverse ¢(s).

2. Compute the arc-length reparametrization
y(s) =y((s)).

3. Compute the curvature of y
k(s) = lr(s)] -

4. The curvature of y is

k(t) = k(s(1)).

Definition 1.18: Hyperbolic functions

to ot t_ ot
cosh(t) = % sinh(t) = ¢ ze
sinh(t) cosh(t)
tanh(t) = th(t) =
anh(?) cosh(t) coth(®) sinh(t)
1 1
sech(®) cosh(t) csch(®) sinh(t)

1.1 Curvature
Definition 1.14: Curvature of unit-speed curve

The curvature of a unit-speed curvey : (a,b) — R is

k() = [y@ -

Theorem 1.19: Properties of Hyperbolic Functions

sechz(t) + tanhz(t) =1
cosh(t)’ = sinh(t)

coshz(t) - sinhz(t) =1
sinh(t)” = cosh(t)
tanh(t)’ = sechz(t)

Example 1.15: Curvature of the Circle

Question. Compute the curvature of the circle of radius R > 0
® = <x +Rcos<£) +sin<£> 0)
Y 0 PYARL z)Y)"
Solution. First, check that y is unit-speed:

10 (-sn(§).s(£).0)

Now, compute second derivative and curvature

0= (-4eos()-4sn(2))

k(®) = ()] = %

ly@®l =1

Definition 1.16: Curvature of regular curve

Let y: (a,b) — R® be a regular curve and y be a unit-speed
reparametrization of y, withy =y o ¢ and ¢: (a,b) — (a,b). Let
K : (a,b) = R be the curvature of y. The curvature of y is

K(t) = k($(0)) -

Example 1.20: Curvature of the Catenary

uestion. Consider the Catenary curve
QOu y
y(@®) = (¢, cosh(t)), teR.

1. Prove thaty is regular.

2. Compute the arc-length reparametrization of y.
3. Compute the curvature of y.

4. Compute the curvature of y.

Solution.
1. y is regular because

y(@®) = (1, sinh(z))

Il = \J1 + sinh?(t) = cosh() > 1

2. The arc-length of y starting at ¢, = 0 is

t t
s(t) = L ly()| du = -L cosh(u) du = sinh(t)

where we used that sinh(0) = 0. Moreover,

s=sinh(t) < s=

= et —2set —1=0

sech(t)’ = —sech(t) tanh(t)




Substitute y = €’ to obtain
e -2l —1=0 = yz—Zsy—1=0
— Y =8=* m .
Notice that

y+=s+\/1+szzs+@=s+|s|20

by definition of absolute value. Therefore,

=y, =s+V1+s* = t(s):log(s+\/l+sz)

The arc-length reparametrization of y is
7(s) =y@(s)) = (log (s +41+ 52) N1+ sz>

3. Compute the curvature of y

?(s):( L )

1+ s? m
Ho= <_(1 + ;)3/2’ (1+ ;)3/2)
Gs) = [ (o)] = —

1+ s2

4. Recalling that s(¢) = sinh(¢), the curvature of y is

1 1
1+ sinhz(t) coshz(t) .

K(t) = k(s(t) =

Theorem 1.24

Lety,n : (a,b) —> R3. Then, the curve y xn is smooth, and

i(yxn)z}"xnﬂxfl.
dt

Theorem 1.25: Curvature formula

Lety : (a,b) — R3 be regular. The curvature of y is

OB
[{ON

k(1)

Definition 1.21: Vector product

The vector product of two vectors u,v € R3 is

i j Ok
UXv=|1Uu uU U
Vi Vo V3

Example 1.26: Curvature of the Helix

Question. Consider the Helix of radius R > 0 and rise H,
Y@ = (Rcos(t), Rsin(t), Ht) .

1. Prove thaty is regular.
2. Compute the curvature of y.

Solution.
1. y is regular because

y(@®) = (—Rsin(¢), Rcos(t), H)

Iv®l =VR:+H2>R>0

2. Compute the curvature using the formula:

y(@) = (—Rcos(t), —R sin(¢),0)
¥y x¥ = (RH sin(t), —RH cos(t), R?)
ly x ¥l = RVR? + H?
_Ir@xy®l _ R

¢ =
MO yor R

Theorem 1.22: Geometric Properties of vector product

Let u,v € R® be linearly independent. Then

« u x v is orthogonal to the plane spanned by u, v
+ |u x v| is the area of the parallelogram with sides u, v
o The triple (u, v,u x v) is a positive basis of R3

Theorem 1.23

For all u, v, w € R3 it holds:

(uxv)xw=((u-w)v—(v-wu

Example 1.27: Calculation of curvature

Question. Define the curve

y(@®) = <§ cos(t), 1 — 2sin(t), g cos(t)) )

1. Prove that y is regular.
2. Compute the curvature of y.

Solution.

1. y is regular because

. 8 . 6 . .

Y= - sin(t), —2 cos(t), —c sin(t) ) , lyl=2=0.
2. Compute the curvature using the formula:

Y= (—% cos(t), 2 sin(t), —g cos(t)) ly xyl =4

i = (~12,0,19) el
vy 5’75 2"




Example 1.28: Different curves, same curvature

Question Let y be a circle
y(@®) = (2 cos(?), 2 sin(¢),0),
and 5 be a helix of radius S > 0 and rise H > 0
n(t) = (Scos(t), Ssin(t), Ht) .

Find S and H such that y and n have the same curvature.
Solution. Curvatures of y and n were already computed:

1 S

KY:_ = ——_
2 S2 + H?

>

Imposing that k¥ = k', we get

1 S

S=—2 _  —  HZ=25-S2.
2 S H2

Choosing S =1 and H = 1 yields ¥ = «".

Definition 1.32: Torsion of regular curve with x # 0

Lety : (a,b) — R® be a regular curve with k # 0. Lety be a unit-
speed reparametrization of y withy =y o ¢ and ¢ : (a,b) — (a,b).
Let 7 : (a,b) — R be the torsion of y. The torsion of y is

() = 7(¢(1)) -

1.2 Frenet frame and torsion
Definition 1.29: Frenet frame of unit-speed curve
Lety : (a,b) — R® be unit-speed, with k # 0.
1. The tangent vector toy at y(¢) is
() =y(@).
2. The principal normal vector toy at y(¢) is

n(t) = @

k()
3. The binormal vector to y at y(t) is
b(t) =y() xn(t).
4. The Frenet frame of y at y(t) is the triple

{t(),n(®), b(1)}.

Theorem 1.30: Frenet frame is orthonormal basis

Lety: (a,b) — R3 be unit-speed, with k # 0. The Frenet frame
{t@®), n(t), b()}

is a positive orthonomal basis of R? for each t € (a, b).

Definition 1.31: Torsion of unit-speed curve with k # 0

Lety : (a,b) — R® be unit-speed, with k # 0. The torsion of y is
the unique scalar 7(¢) such that

b(t) = —c(H)n(t).

In particular,

() = —=b@®) - n().

Example 1.33: Curvature and torsion of Helix with Frenet frame

Question. Consider the Helix of radius R > 0 and rise H
y(@®) = (Rcos(t), Rsin(t),tH), teR.

1. Compute the arc-length reparametrization y of'y.
2. Compute Frenet frame, curvature and torsion of y.
3. Compute curvature and torsion y.

Solution.
1. The arc-length of y starting at t, = 0, and its inverse, are
y(@®) = (—Rsin(t), Rcos(t), H)
Wi=p p=VRR+H?

t
5(0) = jo 0l du=pr, 9=,

The arc-length reparametrization y of y is

Y(s) =y(t(s)) = <Rcos <£),Rsin(£) i E) .
p p)* p

2. Compute the tangent vector to y and its derivative
t(s) = }7 -1 (—R sin (i) ,Rcos (£> ,H)
P P P
i(s) = % (— cos (i) ,—sin (i) ,0)
P P p

The curvature of y is

€6) = 76 = i) = 2

The principal normal vector and binormal are
n(s) = § = (— cos (i) ,—sin (i) R 0)
K P P
- 1 S

We are left to compute the torsion of y:

& H .
b(s) = ? (cos (%),sm(%),O)

b(s) - fi(s) = ~ 2
£ f H H
7(s) = =b(s) - n(s) = E = T
3. The curvature and torsion of y are
K() = R(:(0) = @
() = 7(s(t)) = T




Theorem 1.34: Torsion formula

Lety : (a,b) — R3 be regular, with x # 0. The torsion of y is

_vOxy®)-¥®)

W=
@) xFo)

Example 1.35: Torsion of the Helix with formula
Question. Consider the Helix of radius R > 0 and rise H > 0
y(@®) = (Rcos(t), Rsin(t), Ht), t€R.

1. Prove that y is regular with non-vanishing curvature.
2. Compute the torsion of y.

Solution.

1. y is regular with non-vanishing curvature, since

WOl =VRE+H2>R>0, « R

=——-2>0
R? + H?
2. We compute the torsion using the formula:

y(@®) = (—Rsin(¢), Rcos(t), H)
Y@ = (=R cos(t), —R sin(t), 0)
¥(@®) = (Rsin(t), —R cos(?), 0)
¥ x¥ = (RH sin(t), —RH cos(2), Rz)
ly x¥| = RVR? + H?
G x9) ¥ = R°H
@D H

40) =
Iy xyl*  R*+H?

Example 1.36: Calculation of torsion

Question. Compute the torsion of the curve

() = (% cos(t), 1 — 2sin(t), g cos(t)) :

Solution. Resuming calculations from Example 1.27,

¥ = (% sin(t), 2 cos(t), g sin(t))
¥ xy)-¥= Z—g sin(t) — % sin(t) = 0
D7 _

0
. 12
ly ¥l

(t) =

Example 1.38: Twisted cubic

Question. Lety : R — R be the twisted cubic
y(®) = t.1%0).

1. Isy regular/unit-speed? Justify your answer.
2. Compute the curvature and torsion of y.
3. Compute the Frenet frame of y.

Solution.
1. y is regular, but not-unit speed, because
y(®) = (1,2t,3t%)

WOl =1 +4t2 + 94 > 1

2. Compute the following quantities

(Dl = V14 = 1

¥ =(0,2,6t) Iy %7 = 241 + 92 + o

Y xy = (6%, —6t,2)
Compute curvature and torsion using the formulas:
f = ly ¥l 2v1+ 982 + ot
P 1+ 4+ 9432

_ <0y 3
o) = 2 2 4"
Iy ¥l 1+ 9t + 9t

3. By the Frenet frame formulas and the above calculations,

t= L -1 (1,2t,3t%)
Wl 1+ a2 4 o
-
rxr _ ! (3t%,-3t,1)

b=—"—7>-=
by =¥l 14 o2 + opt

(=93 —2t,1 — 9t*, 61 + 3t)
n=bxt=

J1 4962 + 941+ 412 + op4

Theorem 1.37: General Frenet frame formulas

The Frenet frame of a regular curve y is

R S 27 RN 23 )L
v

Crxilivl

1.3 Frenet-Serret equations

Theorem 1.39: Frenet-Serret equations

Lety : (a,b) — R® be unit-speed with k # 0. The Frenet frame of y
solves the Frenet-Serret equations

t=xn, n=—«xt+7b, b=—rn.

Definition 1.40: Rigid motion

A rigid motion of R® is a map M : R®> — R? of the form
M(v)=Rv+p, veR3,

where p € R®, and R € SO(3) rotation matrix,

SOB3)={ReR¥3 : RTR=1, det(R) = 1}.




Theorem 1.41: Fundamental Theorem of Space Curves

Letk,7 : (a,b) > R be smooth, with k > 0. Then:

1. There exists a unit-speed curvey : (a,b) — R® with curvature
k(t) and torsion 7(t).

2. Suppose thaty : (a,b) — R® is a unit-speed curve whose cur-
vature K and torsion 7 satisfy

k) =«x@), 7@t)=1@), Vte(ab).
There exists a rigid motion M : R® — R such that

Y@ = M(y(®)), vt € (ab).

Theorem 1.43: Curves contained in a plane - Part I

Lety : (a,b) — R3 be regular with k # 0. They are equivalent:
1. The torsion of y satisfies

(t)=0, Vte(ab).

2. y is contained in a plane: There exists a vector P € R and a
scalar d € R such that

y@)-P=d, vte(ab).

Example 1.42: Application of FTSC

Question. Consider the curve
y(®) = (V3¢ — sin(t), V3 sin(t) + £, 2 cos(t)) .
1. Calculate the curvature and torsion of y.
2. The helix of radius R and rise H is parametrized by
n(t) = (Rcos(?), Rsin(t), Ht) .

Recall that 7 has curvature and torsion

__ R o, __H
R?+H?’ R+ H?
Prove that there exist a rigid motion M : R® — R? such that
y®) =M@@t)), VvteR. (1.2)

Solution.
1. Compute curvature and torsion with the formulas
y@® = (\/§ — cos(t), V3 cos(t) + 1, -2 sin(t))
#(®) = (sin(®), —V3sin(t), —2 cos(t))
y@) = (cos(t), —J/3cos(t), 2 sin(t))
y(®) xj(t) = (=2 (V3 + cos(®)) . 2 (V3 cos(t) — 1), —4sin(t))
v () <y @I =32
WoI =8
(&) xy(®)-y(t) = -8
G Wil

[
wp=LNT_ 51
ly > ¥l 24
2. Equating xk = " and r = 7, we obtain
_R__1 _H 1
RZ+H? 4’ RZ+H? 4
Rearranging both equalities we get
R*+H?=4R,  R*+H?=-4H,
from which we find the relation R = —H. Substituting into

R? + H? = —4H, we get
H=-2, R=-H=2.

For these values of R and H we have k = 7 and r = 7. By the
FTSC, there exists a rigid motion M : R® — R3 satisfying (1.2).

Theorem 1.44: Curves contained in a plane - Part II

Lety: (a,b) — R3 be regular, with ¥ # 0 and 7 = 0. Then, the
binormal b is a constant vector, and y is contained in the plane of
equation

(x—y(i))-b=0.

Example 1.45: A planar curve

Question. Consider the curve
Yy =t 2t,tY), t>0.
1. Prove thaty is regular.
2. Compute the curvature and torsion of y.

3. Prove thaty is contained in a plane. Compute the equation of
such plane.

Solution.
1. y is regualar because y(t) = (1, 2,4t>) # 0.

2. Compute the following quantities

Iyl = <5 + 16t*

¥ =12(0,0,t%)
¥ =24(0,0,1)

yxy =122t —1%,0)
v x ¥l = 12452
¥xy)-y=0

Compute curvature and torsion with the formulas

y Y, 2
() = Yxy _ 12V5t

.03
Iyl 5 + 1684

(=N Y_,
Iy ¥l

3. ¥ lies in a plane because 7 = 0. The binormal is

Yy xy 1
ly <yl 5

Atty = 0 we havey (0) = 0. The equation of the plane contain-
ing y is then x - b = 0, which reads

—x—-—y=0 = 2x-y=0.




Theorem 1.46: Curves contained in a circle

Lety : (a,b) — R3 be unit-speed. They are equivalent:
1. y is contained in a circle of radius R > 0.

2. There exists R > 0 such that

K@:%,r@:m vte(ab).

Example 1.47: A curve contained in a circle

Question. Consider the curve

y@® = (5 cos(t), 1 — sin(t), —c cos(t))

1. Prove that y is unit-speed.
2. Compute Frenet frame, curvature and torsion of y.

3. Prove thaty is part of a circle.

Solution.

1. y is unit-speed because
y@®) = (—é sin(t), — cos(t), = sm(t))

||y(t)|| = — sm 2(t) + cos?(t) + g sin (t) =1

2. Asy is unit-speed, the tangent vector is t(¢) = y(¢). The curva-
ture, normal, binormal and torsion are

t@) = <—§ cos(t) sin(t), = cos(t))

k(@) = [t@)] = = cosz(t) + sin?(t) + E cos®(t) = 1
n(t) = (t)y(t) = (—— cos(t), sin(t), = cos(t))
. 3 4
b@)ZyO)XnO):<—§JL—§>
b=0
r=-b-n=0

3. The curvature of y is constant and the torsion is zero. Therefore
Y is contained in a circle of radius

R=-=1.

1
K

10



2 Topology

Definition 2.1: Topological space

Let X be a set and I a collection of subsets of X. We say that I is
a topology on X if the following 3 properties hold:

+ (A1) The sets @, X belong to 7,

 (A2) If {A;}ic; is an arbitrary family of elements of 7, then

UAiEg.

i€l
« (A3)IfA,Be I then AnBe J.
Further, we say:
« The pair (X, 9) is a topological space.

+ The elements of X are called points.
« The sets in the topology I are called open sets.

Definition 2.2: Trivial topology

Let X be a set. The trivial topology on X is the collection of sets

Ttrivial 1= 19, X}.

Definition 2.3: Discrete topology

Let X be a set. The discrete topology on X is the collection of all
subsets of X
Tdiscrete 1= 1A 1 AC X}

Definition 2.4: Open set of R"

Let A C R". We say that the set A is open if it holds:
Vx€A, Ir>0st B(x)CA, (2.1)

where B,(x) is the ball of radius r > 0 centered at x

B.(x) :={y eR" : |y—x|<r},

and the Euclidean norm of x € R" is defined by

Definition 2.5: Euclidean topology of R"

The Euclidean topology on R" is the collection of sets

Teudid :={A : ACR", A isopen}.
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Proof: T4 is a topology on R”

To prove Teyclid is a topology on R”, we need to check the axioms:

+ (A1) We have @, R" € T iq: Indeed @ is open because there is
no point x for which (2.1) needs to be checked. Moreover, R"
is open because (2.1) holds with any radius r > 0.

« (A2) Let A; € Teyeliq for alli € I. Define the union A = | J; A;.
We need to check that A is open. Let x € A. By definition of
union, there exists an index iy € I such that x € A; . Since A;
is open, by (2.1) there exists r > 0 such that B,(x) C A;. As
Aj, € A, we conclude that B,(x) C A, so that A € T¢ylig-

« (A3) Let A,B € Jouclia- We need to check that A n B is open.
Let x € An B. Therefore x € A and x € B. Since A and B are
open, by (2.1) there exist r,r, > 0 such that B, (x) C A and
B,,(x) C B. Setr := min{ry,r,}. Then

B()CB,()CA, B(x)CB,(x)CH,

Hence B,(x) C A n B, showing that An B € T4

This proves that T4 is a topology on R".

Proposition 2.6: B,.(x) is an open set of Tyclid

Let R" be equipped with the Euclidean topology J¢ycjig- Letr > 0
and x € R". Then B.(x) € Jeydlid-

Definition 2.7: Closed set
Let (X, ) be a topological space. A set C C X is closed if
C°eT,

where C¢ := X \ C is the complement of C in X.

Definition 2.8: Comparing topologies
Let X be a set and let 97, T be topologies on X.

1. 77 is finer than 75 if 75 C 77.

N

2. 9 is strictly finer than 9, if 7, C

3. J7 and I, are the same topology if 77 = 7.

Example 2.9: Comparing Ty ivial and Jgiscrete

Let X be a set. Then Jivial € Tdiscrete-

Example 2.10: Cofinite topology on R
Question. The cofinite topology on R is the collection of sets

:={U CR : UC is finite, or U° = R}.

o
 cofinite




1. Prove that (R, T.ofinite) 1s @ topological space.
2. Prove that T¢ofinite € Jeuclid-
3. Prove that T¢ofinite # Teuclid-

Solution. Part 1. Show that the topology properties are satisfied:
(A1) We have @ € T ofinite> since @° = R. We have R € T oinite
because R® = @ is finite.

(A2) Let U; € Teofinite for all i € I, and define U := (Ji¢; U;. By the
De Morgan’s laws we have

Cc
U = (Uit U) = nier Uy
We have two cases:
1. There exists iy € I such that Uy is finite. Then
U = nigUf € Uzﬁ >
and therefore U° is finite, showing that U € T yanite-

2. None of the sets Uf is finite. Therefore Uf = R for all i € I,
from which we deduce

U = nietUf = R

== U € Teofinite -

In both cases, we have U € I gnite, SO that (A2) holds.
(A3) Let U,V € Teofinite- Set A =U nV. Then

A =Uu Ve,
We have 2 possibilities:
1. US, V¢ finite: Then A is finite, and A € T¢ofinite-
2. U =Ror V¢ = R: Then A° =R, and A € T ofinite-

In all cases, we have shown that A € T ygnite, SO that (A3) holds.
Part 2. Let U € I ygipnite- We have two cases:

o UC is finite. Then U° = {xq, ..., x,,} for some points x; € R. Up
to relabeling the points, we can assume that x; < X; wheni < j.
Therefore,

=00,

n
U =fa il = i), %0 =
i=0

« U’ =R. Then U = @, which belongs to T¢yjiq by (A1).

In both cases, U € Tyclid- Therefore T ofinite © Teuclid-
Part 3. consider the interval U = (0,1). Then U € Jq)54. However
U° is neither R, nor finite. Thus U ¢ T oginite-

The sets (x;, ;1) are open in Tyid, and therefore U € Toyaid-

2.1 Sequences

Definition 2.11: Convergent sequence

Let (X, 9) be a topological space. Consider a sequence {x,} € X
and a point x € X. We say that x, converges to x; in the topology
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T, if the following property holds:

VUET st xpeU, AIN=NU)eN st
x, €U,Vn>N.

(2.2)

The convergence of x;, to x; is denoted by x, — x.

Proposition 2.12: Convergent sequences in Jijyial

Let X be equipped with Jyyivial- Let {x,} € X, xy € X. Then x, - x;.

Proof

To show that x, — x; we need to check that (2.2) holds. Let U €
T trivial With xg € U. We have two cases:

« U = @: There is nothing to prove, since x; cannot be in U.

« U= X: Take N = 1. Since U = X, we have x,, € U for alln > 1.

Thus (2.2) holds for all the sets U € Jiyial, showing that x, — x;.

Warning

Proposition 2.12 shows the topological limit may not be unique!

Proposition 2.13: Convergent sequences in Jgiscrete

Let X be equipped with Tgiscrete- Let 3,3 € X, xy € X. They are
equivalent:

1. X, — X in the topology T giscrete-
2. {x,}is eventually constant: IN € N s.t. x, =x), Vn> N

Proof

Part 1. Assume that x, = x;. Let U = {xy}. ThenU € Jjjscrete- Since
X, — X, by (2.2) there exists N € IN such that

x, €U, vn>N.

As U = {xy}, we infer x,, = x for all n > N. Hence x, is eventually
constant.

Part 2. Assume that x;, is eventually equal to x, that is, there exists
N € N such that

vn>N. (2.3)

Let U € I be an open set such that x, € U. By (2.3) we have that

Xn = Xo >

x, €U, vVn>N.

Since U was arbitrary, we conclude that x;, — x.

Definition 2.14: Classical convergence in R"

Let {x,} € R" and x, € R". We say that x, converges X, in the
classical sense if |x, — x| — 0, that is,

Ve>0,INeN, st |x,—%y| <e,vn>N.




Proposition 2.15: Convergent sequences in Jeyclid

Let R" be equipped with Jgyqiq- Let {x,} € R", xy € R". They are
equivalent:

1. X, — Xq in the topology Jeyclid-
2. X, — X in the classical sense.

2.2 Metric spaces

Definition 2.16: Distance and Metric space

Let X be a set. A distance on X is a functiond : X x X — R such
that, for all x, y, z € X they hold:

« (M1) Positivity: d(x,y) > 0andd(x,y) =0 < x=1y
« (M2) Symmetry: d(x,y) = d(y, x)
« (M3) Triangle Inequality: d(x,z) < d(x,y) +d(y, z)

The pair (X, d) is called a metric space.

Definition 2.17: Euclidean distance on R"

The Euclidean distance over R" is defined by

" 1/2
dx,y) :=x—-y| = (Z |x; — yi|2> , Vx,y€eR".
i=1

Proposition 2.18

Let d be the Euclidean distance on R". Then (R", d) is a metric space.

J

Definition 2.19: Topology induced by the metric

Let (X, d) be a metric space. The set A C X is open if it holds
VxeU,3areR,r>0 st B(x)CU,
where B,(x) is the ball centered at x of radius r, defined by
B.(x)={yeX: d(x,y)<r}.
The topology induced by the metric d is the collection of sets

Ty =1{U : UCX,U open}.

Remark 2.20: Topology induced by Euclidean distance

Consider the metric space (R",d) with d the Euclidean distance.
Then
Ti = Teuclid »

where T lid is the Euclidean topology on R”™.

Example 2.21: Discrete distance

Question. Let X be a set. The discrete distance is the function
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d: X x X — Rdefined by

0
1

fx=y
dx.y) = ifx=y

1. Prove that (X, d) is a metric space.
2. Prove that I3 = Jgiscrete-

Solution. See Question 3 in Homework 3.

Proposition 2.22: Convergence in metric space

Suppose (X, d) is a metric space and J; the topology induced by d.
Let {x,} C X and x; € X. They are equivalent:

1. x, = xo with respect to the topology 7.
2. d(x,;, %) > 0in R.
3. For all ¢ > 0 there exists N € IN such that

X, € By(xp), Yvn>N.

2.3 Hausdorff spaces

Definition 2.23: Hausdorff space

We say that a topological space (X, J) is HausdorfT if for every
x,y € X with x # y, there exist U,V € J such that
UnV=0.

xeU, yeV,

Proposition 2.24

Let (X, d) be a metric space, 7 the topology induced by d. Then
(X, ) is a Hausdorff space.

Proof

Let x, y € X with x # y. Define
1
U :=B/(x), V:=BJ(y), ¢:= Ed(x,y).

By Proposition 2.24, we know that U,V € J;. Moreover x € U,
y € V. We are left to show that UnV = @. Suppose by contradiction
thatU nV = @ and let z € U n V. Therefore

dix,z)<e, dy,z)<e.
By triangle inequality we have

d(x,y) <d(x,2) +d(y,2) <e+e=d(x,y),

where in the last inequality we used the definition of . This is a
contradiction. Therefore U nV = @ and (X, 9;) is HausdorfT.

Definition 2.25: Metrizable space

Let (X, ) be a topological space. We say that the topology I is



metrizable if there exists a metric d on X such that
T =9y,

with J; the topology induced by d.

Corollary 2.26

Let (X, ) be a metrizable space. Then X is Hausforff.

Example 2.27: (X, Jiyiyial) is not Hausdorff

Question. Let X be equipped with the trivial topology Jirivial-
Then X is not Hausdorff.

Solution. Assume by contradiction (X, Jiyiyia1) is Hausdorff and let
x,y € X with x # y. Then, there exist U,V € Jjyial Such that

xeU, yeV, UnV=0.
In particular U # @ and V # @. Since I = {@, X}, we conclude that
U=vVv=X = UnV=X=#0Q.

This is a contradiction, and thus (X, Jiyivial) is not Hausdorff.

Example 2.28: (R, T ofinjte) is not Hausdorft

Question. Consider the cofinite topology on R

T cofinite = {U C R : U°€ is finite, or U = R}.

Prove that (R, T ofnite) is not Hausdorff.
Solution. Assume by contradiction (R, T¢ofinite) is Hausdorft and
let x, y € R with x # y. Then, there exist U,V € T yanijte Such that

xeU, yeV, UnV=0.

Taking the complement of U n V = @, we infer

R=UnV)=UuV". (2.4)

There are two possibilities:

1. U¢ and V* are finite. Then U® u V¢ is finite, so that (2.4) is a
contradiction.

2. Either U = RorU° = R. If U°* = R, thenU = @. Thisis a
contradiction, since x € U. If V¢ = R, thenV = @. This is a
contradiction, since y € V.

Hence (R, Jofinite) is not HausdorfT.

Example 2.29: Lower-limit topology on R is not Hausdorff

Question. The lower-limit topology on R is the collection of sets
TiL = @R} u{(a, +) : a€R}.

1. Prove that (R, 971 is a topological space.
2. Prove that (R, 911) is not Hausdorff.

Solution. Part 1. We show that (R, 971) is a topological space by
verifying the axioms:
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(A1) By definition @,R € 7.
(A2) Let A; € 97, for alli € I. We have 2 cases:

« If A; = @ for all i, then y;A; = @ € 7.

« At least one of the sets A; is non-empty. As empty-sets do
not contribute to the union, we can discard them. Therefore,
A; = (—00,a;) with g; € R u {co}. Define:

a:=supg, A :=(-,a).

i€l

Then A € I and:
A = Vel A

To prove this, let x € A. Then x < a, so there exists iy € I such
that x < g; . Thus, x € 4;, showing A C ujefA;. Conversely, if
X € UjerA;, then x € A; for some iy € I, implying x < ¢, < a.
Thus, x € A, proving u;c;A; € A.

(A3) Let A, B € 911.. We have 3 cases:

e« A=@orB=0¢. Then AnB=09 € ;..

« A # @and B # @. Therefore, A = (—o0,a) and B = (—00,b)
with a,b € R u {oo}. Define

U:=AnB, 2z :=min{q,b}

Then U = (—00, Z) € 9LL'

Thus, (R, 971 ) is a topological space.
Part 2. To show (R, J71) is not Hausdorff, assume otherwise. Let
x,y € Rwith x # y. Then there exist U,V € 11 such that:

xeU, yeV, UnV=0.

AsU,V are non-empty, by definition of I, there exist a, b € Ru{oo}
such that U = (—o0,a) and V = (—o0, b). Define:
z :=minf{a, b}, Z :=UnV =(-o,2).

Hence Z # @, contradicting U n V = @. Thus, (R, 971) is not Haus-
dorff.

Proposition 2.30: Uniqueness of limit in Hausdorff spaces

Let (X, 9) be a Hausdorff space. If a sequence {x,} C X converges,
then the limit is unique.

2.4 Continuity



Definition 2.31: Images and Pre-images

Let X,Y be sets and f : X — Y be a function.
1. Let U C X. The image of U under f is the subset of Y defined
by
fU) :={yeY: IxeX st. y=f()}={f(x) : xeX}.

2. Let V. C Y. The pre-image of V under f is the subset of X
defined by

V) :={xeX: f(x)eV}.

Warning

The notation f~1(V) does not mean that we are inverting f. In fact,
the pre-image is defined for all functions.

Definition 2.32: Continuous function

Let (X, Ix) and (Y, Iy) be topological spaces. Let f: X — Y be a
function.

1. Let x5 € X. We say that f is continuous at x; if it holds:

vV eIy st flx)eV,aUeTx st. xoeU, fUCV.

2. We say that f is continuous from (X, Jx) to (Y,Ty) if f is
continuous at each point x; € X.

Proposition 2.33

Let (X, Ix) and (Y, Iy) be topological spaces. Let f: X — Y be a
function. They are equivalent:

1. f is continuous from (X, Ix) to (Y, Fy).
2. Ttholds: f~1(V) € Ix forall V € Fy.

Example 2.34

Question. Let X be a set and 97, I, be topologies on X. Define
the identity map

ldy: (X,97) = (X,T3), Idx(x) :=x.

Prove that they are equivalent:

1. Idy is continuous from (X, 77) to (X, 7).
2. J7 is finer than 95, that is, 7, C 7.

Solution. Idy is continuous if and only if
dy'(V)eT;, vVed,.
But Id)}l(V) =V, so that the above reads
Veg,

vV e,

which is equivalent to 7, C 77.
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Definition 2.35: Continuity in the classical sense
Let f: CR" — R™. We say that f is continuous at xj if it holds:

Ve>0,38>0 st |f(x)— f(xo) <e if |[x—x%¢] <.

Proposition 2.36

Let f: R* —» R™ and suppose R*,R™ are equipped with the Eu-
clidean topology. Let x; € R". They are equivalent:

1. f is continuous at x; in the topological sense.
2. f is continuous at X in the classical sense.

Proposition 2.37

Let (X,dy) and (Y, dy) be metric spaces. Denote by T and Jy the
topologies induced by the metrics. Let f : X — Y and x; € X. They
are equivalent:

1. f is continuous at x; in the topological sense.
2. It holds:

Ve>0,36 >0 s.t.
dy(f(x), f(xp)) < e if dx(x,x) <J.

Example 2.38

Question. Let (X, Ty) and (Y, Iy) be a topological space. Suppose
that Jy is the trivial topology, that is,

9}/ = {@,Y}

Prove that every function f : X — Y is continuous.
Solution. f is continuous if f~}(V) € Iy for all V € Jy. We have
two cases:

« V=¢: Then f}(V) = f"1(2) = 0 € Ix.
« V=Y:Then f1(V) = f1(Y) = X € Ix.

Therefore f is continuous.

Example 2.39
Question. Let (X, Jx) and (Y, Fy) be topological spaces. Suppose
that Jy is the discrete topology, that is,
eC]Y = {V st. V g Y}
Let f: X — Y. Prove that they are equivalent:

1. fis continuous from X to Y.
2. fi{yh) e I forallyey.

Solution. Suppose that f is continuous. Then
vy e gy,

AsV = {y} € Fy, we conclude that f~1({y}) € Ix.
Conversely, assume that f1({y}) € Ix forall y € Y. Let V € Fy.
Trivially, we have V' = uyey {y}. Therefore

vy =f1 (U {y}) =J .

yeV 4

VVE.ij.




As f71({y}) € Ix for all y € Y, by property (A2) we conclude that
f~Y(V) € Ix. Therefore f is continuous.

Proposition 2.40: Continuity of compositions

Let (X,9x),(Y,%),(Z,97) be topological spaces.  Assume
f: X —>Yandg: Y — Z are continuous. Then (go f): X = Zis
continuous.

Definition 2.41: Homeomorphism

Let (X, Ix), (Y, Iy) be topological space. A function f: X — Y is

called an homeomorphism if they hold:

1. f is continuous.
2. f admits continuous inverse f!: Y — X.

2.5 Subspace topology

Definition 2.42: Subspace topology

Let (X, J) be a topological space and Y C X a subset. Define the
family of sets

§:={ACY:3UeT st. A=UnY}
={UnY, UeT}.

The family & is the subspace topology on Y induced by the inclu-
sionY C X.

Proposition 2.43

Let (X, J) be a topological space and Y € . Let
A CY. Then

Aes = Aeg.

Warning

Let (X, J) be a topological space, A CY C X. In general we could
have
AeS and A¢T .

Example. Let X = R with J¢,iq. Consider the subset Y = [0, 2),
and equip Y with the subspace topology &. Let A = [0,1). Then
A ¢ Teycig but A € 8, since

A=(-1,1)nY, (-1,1) € Teyelid -

Example 2.44

Question. Let X = R be equipped with Jjiq- Let & be the sub-
space topology on Z. Prove that

S =9 discrete -

Solution. To prove that & = Jgiscrete, We need to show that all the
subsets of Z are open in .
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1. Let z € Z be arbitrary. Notice that
{Zd=G-1,z+1)nZ
and (z—1,z+ 1) € Toyclid- Thus {z} € §.
2. Let now A C Z be an arbitrary subset. Trivially,
A = ugepiz}.

As {z} € &, we infer that A € § by (A2).

2.6 Connectedness

Definition 2.45: Connected space

Let (X, 9) be a topological space. We say that:

1. X is connected if the only subsets of X which are both open
and closed are @ and X.
2. X is disconnected if it is not connected.

Definition 2.46: Proper subset

Let X be a set. A subset A C X is properif A # @ and A # X.

Proposition 2.47: Equivalent definition for connectedness

Let (X, ) be a topological space. They are equivalent:

1. X is disconnected.
2. X is the disjoint union of two proper open subsets.
3. X is the disjoint union of two proper closed subsets.

Example 2.48

Question. Consider the set X = {0, 1} with the subspace topology
induced by the inclusion X C R, where R is equipped with the Eu-
clidean topology Jeyclid- Prove that X is disconnected.

Solution. Note that

X ={0}u{1}, {0}n{1}=0.

The set {0} is open for the subspace topology, since
{00=Xn(-11), (-1L1)€ Teyclid-

Similarly, also {1} is open for the subspace topology, since

{1}=Xn(0.2), (0,2) € Teyclid -

Since {0} and {1} are proper subsets of X, we conclude that X is
disconnected.

Example 2.49

Question. Let R be equipped with ;4> and let p € R. Prove that
the set X = R\ {p} is disconnected.
Solution. Define the sets

Az(—"o’P): B:(p>°°)




A and B are proper subsets of X. Moreover
X=AuB, AnB=0.

Finally, A, B are open for the subspace topology on X, since they are
open in (R, T¢ycliq)- Therefore X is disconnected.

Theorem 2.50

Let (X, Ix), (Y, Jy) be topological spaces. Suppose that f: X —
Y is continuous and let f(X) C Y be equipped with the subspace
topology. If X is connected, then f(X) is connected.

Theorem 2.51: Connectedness is topological invariant

Let (X, ), (Y, Iy) be homeomorhic topological spaces. Then

X is connected <= Y is connected

Example 2.52

Question. Define the one dimensional unit circle
Sl :={(x,y) €R? : x?+y?=1}.

Prove that $! and [0, 1] are not homeomorphic.
Solution. Suppose by contradiction that there exists a homeomor-
phism

f:[0,1] — 8t

The restriction of f to [0, 1] \ {%} defines a homeomorphism

(o m ps(l)
The set [0,1] \ {%} is disconnected, since

[0,1]\{1/2} =[0,1/2) u (1/2,1]

with [0,1/2) and (1/2, 1] open for the subset topology, non-empty
and disjoint. Therefore, using that g is a homeomorphism, we con-
clude that also $!\{p} is disconnected. Let 6, € [0, 2) be the unique
angle such that

p = (cos(6y), sin(6y)) .

Thus $! \ {p} is parametrized by
y(@) := (cos(t),sin(t)), € (6y,0 +2r1).

Since y is continuous and (6,6, + 27) is connected, by Theorem
2.50, we conclude that $! \ {p} is connected. Contradiction.

Definition 2.53: Interval
A subset I C R is an interval if it holds:

== x€el.

Vabel,xeR st.a<x<b
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Theorem 2.54: Intervals are connected

Let R be equipped with the Euclidean topology and let I C R. They
are equivalent:

1. I is connected.
2. Iis an interval.

Theorem 2.55: Intermediate Value Theorem

Let (X, ) be a connected topological space. Suppose that f : X —
R is continuous. Suppose that a,b € X are such that f(a) < f(b). It
holds:

VeeR st fla)<c< f(b), 3¢ e X st. f(é)=c.

Example 2.56: Intervals are connected - Alternative proof

Question. Prove the following statements.

1. Let (X,9) be a disconnected topological space. Prove that
there exists a function f : X — {0, 1} which is continuous and
surjective.

2. Consider R equipped with the Euclidean topology. Let I € R be
an interval. Use point (1), and the Intermediate Value Theorem
in R (see statement below), to show that I is connected.

Intermediate Value Theorem in R: Suppose that f: [a,b] - R is
continuous, and f(a) < f(b). Let ¢ € R be such that f(a) < ¢ < f(b).
Then, there exists & € [a,b] such that f(¢) = c.

Solution. Part 1. Since X is disconnected, there exist A,B €
proper and such that

X=AuB, AnB=0.
Define f: X — {0,1} by
0 ifxeA
X) =
@) 1 ifxeB

Since A and B are non-empty, it follows that f is surjective. More-
over f is continuous: Indeed suppose U C R is open. We have 4
cases:

0,1¢U. Then f{(U)=0€JT.
«0€U,1¢U.Then f1U)=A€T.
0¢U,1€U.Then f1(U)=BeJ.
0,1€U. Then f1U)=X€T.

Then f~}(U) € J for allU C R open, showing that f is continuous.
Part 2. Let I C R be an interval. Suppose by contradiction I is
disconnected. By Point (1), there exists a map f : I — {0, 1} which
is continuous and surjective. As f is surjective, there exist a,b € I
such that

fl@=0, fb)=1.

Since f is continuous, and f(a) = 0 < 1 = f(b), by the Intermediate
Value Theorem in R, there exists & € [a,b] such that f(¢) = 1/2. As
I is an interval, a,b € I, and a < & < b, it follows that £ € I. This
is a contradiction, since f maps I into {0, 1}, and f(¢) = 1/2 ¢ {0, 1}.
Therefore I is connected.




2.7 Path-connectedness

Definition 2.57: Path-connectedness

Let (X, 7) be a topological space. We say that X is path-connected
if for every x, y € X there exist a,b € R with a < b, and a continuous
function

a: [abl > X st ala)=x, abd)=y.

Theorem 2.58: Path-connectedness implies connectedness

Let (X, 9) be a path-connected topological space. Then X is con-
nected.

Example 2.59

Question. Let A C R" be convex. Show that A is path-connected,
and hence connected.

Solution. A is convex if for all x, y € A the segment connecting x
to y is contained in A, namely,

[x,y] :={(1—t)x+ty : t€[0,1]} C A.
Therefore we can define
a: [0,1] > A, a) :=(1A—-x+ty.

Clearly « is continuous, and a(0) = x, a(1) = y.

Example 2.60: Spaces of matrices

Let R?? denote the space of real 2 x 2 matrices. Assume R*? has
the euclidean topology obtained by identifying it with R*.

1. Consider the set of orthogonal matrices
02)={AecR?>?: ATA=1}.

Prove that O(2) is disconnected.
2. Consider the set of rotations
SO2)={AeR¥? : ATA=1, det(A) =1}.

Prove that SO(2) is path-connected, and hence connected.

Solution. Let A € O(2), and denote its entries by a, b, ¢, d. By direct
calculation, the condition AT A = I is equivalent to

ad+rr=1, P+ct=1, ac+bd =0.

From the first condition, we get that a = cos(t) and b = sin(t), for
a suitable ¢ € [0, 27). From the second and third conditions, we get
¢ = +sin(t) and d = F cos(t). We decompose O(2) as

O(2)=AuB,
a=sow={( 510 5 ) setoan)
cos(t)  sin(t)
B {< sin(t) —cos(t) ) t €0, Zﬂ)g .

1. The determinant function det : O(2) — Ris continuous. If M €
A, we have det(M) = 1. If instead M € B, we have det(M) = —1.
Moreover,

det "1 = A,  det '({o}) = B.
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As det is continuous, and {0}, {1} closed, we conclude that A and
Bare closed. Therefore, A and B are closed, proper and disjoint.
Since O(2) = A u B, we conclude that O(2) is disconnected.

2. Define the function ¢ : [0, 27) — SO(2) by

— sin(t) )

cos(t)

cos(t)
sin(t)

o) = (

Clearly, ¢ is continuous. Let R,Q € SO(2). Then R is deter-
mined by an angle t;, while Q by an angle ¢,. Up to swap-
ping R and Q, we can assume {; < t,. Define the function
f:[0,1] - SO(2) by

f) =9t (A=) +1,1).
Then, f is continuous and
fO©=yt)=R [f)=y{)=0.

Thus SO(2) is path-connected.

Warning

In general connectedness does not imply path-connectedness, as
seen in Proposition 2.92.




3 Surfaces

Definition 3.1: Topology of R"

The Euclidean norm on R” is denoted by

0 x=(x,...,%,;) ER".

Define the Euclidean distance d(x,y) = |x — y].
1. The pair (R", d) is a metric space.

2. The topology induced by the metric d is called the Euclidean
topology, denoted by 7.

3. A set U C R" is open if for all x € U there exists ¢ > 0 such
that B.(x) C U, where

B(x) :={y €R" : [x—y| <¢}

is the open ball of radius ¢ > 0 centered at x. We write U € 7,
with & the Euclidean topology in R™.

4. AsetV CR"isclosedif V¢ :=R"\U is open.

Definition 3.2: Subspace Topology

Let A C R". The subspace topology on A is the family
Ty ={UCA: AIWEeT st. U=AnW}.

IfU € T4, we say that U is open in A.

Definition 3.3: Continuous Function

Let f: U CR* - R™ with U open. We say that f is continuous at
xe€Uifve> 0,36 > 0 such that

Ix—yl <é

=

1fG) = f(y)ll <e.

f is continuous in U if it is continuous for all x € U.

Theorem 3.4: Continuity: Topological definition

Let f: U C R" » V C R™, with U,V open. We have that f is
continuous if and only if f~1(A) is open in U, for all A open in V.

Definition 3.5: Homeomorphism

Let f: U € R* - V C R™ with U,V open. We say that f is a
homeomorphism if:

1. f is continuous;
2. f admits continuous inverse f~!: V — U.
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Definition 3.6: Differentiable Function

Let f: U CR" - R™ with U open. We say that f is differentiable
at x € U if there exists a linear map dy f : R” — R™ such that

dy f(h) = ll_r,r(l) w

for all h € R", where the limit is taken in R™. The linear map dy f is
called the differential of f at x.

Definition 3.7: Partial Derivative

Let f: U CR* - R™, U open, f differentiable. The partial deriva-
tive of f at x € U in direction e; is

() = dyfe) = lim
X; =0

f(x+¢ce;) — f(x)

9. £

Definition 3.8: Jacobian Matrix

Let f: U ¢ R" — R™ be differentiable. The Jacobian of f at x is
the m x n matrix of partial derivatives:

TG = (;’—}f@) e R
i i

If m = nthen Jf € R¥" is a square matrix and we can compute its
determinant, denoted by det(J f).

Proposition 3.9: Matrix representation of dy f

Let f: U € R* - R™ be differentiable. The matrix of the linear
map dy f : R* - R™ with respect to the standard basis is given by
the Jacobian matrix J f(x).

Definition 3.10: Diffeomorphism

Let f: U —» V,withU,V C R"” open. We say that f is a diffeomor-
phism between U and V if:

1. f is smooth,
2. f admits smooth inverse f~1: V — U.

Definition 3.11: Local diffeomorphism
f: R* > R" is a local diffeomorphism at x;, € R" if:
1. There exists an open set U C R” such that x; € U,

2. There exists an open set V C R" such that f(x() € V,
3. f: U — Vis a diffeomorphism.




Proposition 3.12

Diffeomorphisms are local diffeomorphisms.

Proposition 3.13: Necessary condition for being diffeomorphism

Let f: U —» R" with U C R" open. Suppose f is a local diffeo-
morhism at x, € U. Then det J f(xq) # 0.

Theorem 3.14: Inverse Function Theorem

Let f: U —» R" with U C R" open, f smooth. Assume
det J f(xo) # 0,

for some x; € U. Then:

1. There exists an open set U, C U such that x, € U,
2. There exists an open set V such that f(x,) € V,
3. f: Uy — V is a diffeomorphism.

Example 3.15: A local diffeomorphism which is not global

Question. Define the function f : R?> — R?

f(x,y) = (¥ cos(y), e* sin(y)).

Prove f is a local diffeomorphism but not a diffeomorphism.
Solution. f is a local diffeomorphism at each point (x, y) € R? by
the Inverse Function Theorem, since

_ xf cos(y)

det Jf(x,y) =e** 0.

sin(y) )
cos(y)

However, f is not invertible because it is not injective, since
f(x,9) = f(x,y+2nm), V(x,y)€R%L neN.

Hence, f cannot be a diffeomorphism of R? into R?.

.1 Regular Surfaces

Definition 3.16: Surface

Let & C R3 be a connected set. We say that § is a surface if for
every point p € & there exist an open set U C R?, and a smooth
mapo : U - o(U) C & such that

1. peo(),
2. o(U) is openin &,

3. ¢ is a homeomorphism between U and 6(U).

o is called a surface chart at p.

Definition 3.17: Atlas of a surface
Let & be a surface. Assume given a collection of charts

A ={oi}icr » o:U—-0ol)CSs.
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The family & is an atlas of & if

§ = Ja®.

i€l

Definition 3.18: Regular Chart

LetU C R? be open. Amap o = o(u,v) : U — R?is a regular chart
if the partial derivatives

d d
o,(u,v)= ﬁ(u, v), o,(u,v)= d—:(u, v)

are linearly independent vectors of R? for all (u,v) € U.

Definition 3.19: Regular surface
Let & be a surface. We say that:

+ 4 is aregular atlas if any ¢ in & is regular.
« & is aregular surface if it admits a regular atlas.

Theorem 3.20: Characterization of regular charts

Leto : U — R3 with U C R? open. They are equivalent:

1. 0 is a regular chart.

2. dyo : R? - R3 is injective for all x € U.

3. The Jacobian matrix Jo has rank 2 for all (u,v) € U.
4. o0, %0, = 0forall (u,v) e U.

Example 3.21: Unit cylinder
Question. Consider the infinite unit cylinder
S ={(x,y.2) €eR>: x+y?=1}.

S is a surface with atlas of = {1,0,}, with

o(u,v) = (cos(u),sin(u),v),  o1=6aly,, o6,=0ly,,
U = (0.5 <R, U = (7 ) <R.
2 2
Prove that & is a regular surface.
Solution. The map o is regular because
o, = (—sin(u), cos(u),0), o, =1(0,0,1),

are linearly independent, since the last components of ¢, and o,
are 0 and 1. Therefore, also oy and o, are regular charts, being
restrictions of 6. Thus, & is a regular atlas and & a regular surface.

J

Example 3.22: Graph of a function

Question. Let f : U — R be smooth, U C R? open. Define
Ip={@wv, f(uv): (wv)eU},
the graph of f. Then I'y is surface with atlas &/ = {5}, where

6:U—-Tf, owv):=wv, f(uv).




Prove that I'y is a regular surface.
Solution. The Jacobian matrix of o is

1 0
]U(u,v)z( 0 1 )
fu h

Jo has rank 2, because the first minor is the 2 x 2 identity matrix.
Therefore, o is regular. This implies &/ is a regular atlas, and & is a
regular surface.

Definition 3.23: Spherical coordinates
The spherical coordinates of p = (x, y, z) # 0 are

p = (pcos(0) cos(p), p sin(0) cos(¢), p sin(p)) ,

p=JFried, oclnrl oe|-Z1

Example 3.24: Unit sphere in spherical coordinates

Question. Consider the unit sphere in R>

Sz :{(x,y,Z)E]RS : x2+y2+22 — 1}

Prove thato : U — R3 is regular, where

0(0,9) = (cos(8) cos(¢p), sin(f) cos(yp), sin(p)),

)i

U= {(9,4;) €R?: fe (), g€ (‘%%

Solution. The chart o is regular because
oy = (—sin(f) cos(), cos(0) cos(p), 0)
6, = (= cos(0) sin(p), — sin(6) sin(p), cos(¢))
o9 x0, = (cos(0) cos?(), sin(6) cos?(¢), cos(p) sin(p))

log x oyl = | cos(p)| = cos(e) # 0,

where we used that cos(¢) > 0, since ¢ € (- /2, 7/2).

Example 3.25: A non-regular chart
Question. Prove that the following chart is not regular
o(u,v) = (u,v*,v3).
Solution. We have
o,=(0,2v,3v%),  0,(10)=(0,0,0).

o is not regular because o, and g, are linearly dependent along the
line L = {(4,0) : u€R}

\

Definition 3.26: Reparametrization

Suppose that U,U C R? are open sets and
c:U->R, 6:U0-R%,

are surface charts. We say that 6 is a reparametrization of ¢ if
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there exists a diffeomorphism @ : U — U such that

6=0°0.

Theorem 3.27: Reparametrizations of regular charts are regular

Let U,U C R? be openand ¢ : U — R? be regular. Suppose given a
diffeomorphism ® : U — U. The reparametrization

6:U—R3, G=0o®

is a regular chart, and it holds

0;x6; =det JO (o, x0,) .

Definition 3.28: Transition map

Let & be a regular surface,o: U - &, 6 : U8 regular charts.
Suppose the images of o and ¢ overlap

I:=0U)n60)#0.
I'is open in &, being intersection of open sets. Define
V=o' cUu, V:=6'(DcT.

V and V are open, by continuity of ¢ and 6. Moreover, as o and &
are homeomorphisms, we have (V) = 6(V) = I. Therefore, they
are well defined the restriction homeomorphisms

oly: VI, dly: VoI,
The transition map from o to 6 is the homeomorphism

d: Vo>V, ®:=01o5.

Theorem 3.29

Transition maps between regular charts are diffeomorphisms.

Theorem 3.30: Transition maps are reparametrizations

Let & be a regular surface,0: U - &,06: -8 regular charts,
with I :=6(U) n6(U) # @. Define the transition map

=6 (D).

Then o and 6 are reparametrization of each other, with

d=0clo6: VoV, V=0l(), V

6=0°0, c=6-01,

3.2 Smooth maps and tangent plane

Definition 3.31: Smooth functions between surfaces
Let & and &, be regular surfaces and f: & — &, a map.
1. f is smooth at p € &7, if there exist charts

o;: U — & such that p € 61 (U1), f(p) € 62(U3),




and that the following map is smooth
Y:U -»Uy, ¥Y=05'0f00;.

2. f is smooth, if it is smooth for each p € §;.

Proposition 3.32: Inverse of a regular chart is smooth

Leto : U — R3 be regular. Then o' : ¢(U) — U is smooth.

Definition 3.33: Diffeomorphism of surfaces

Let &7 and & be regular surfaces.

L f: & = & isadiffeomorphism, if f is smooth and admits
smooth inverse.

2. &1, &5 are diffeomorphic if there exists f: & — &, diffeo-
morphism.

Proposition 3.34: Image of charts under diffeomorphisms

Let § and & be regular surfaces, f: & — s diffeomorphism. If
o : U — & is aregular chart for § at p, then
G:U—> S, o:=f-0,

is a regular chart for § at f(p).

Definition 3.35: Local diffeomorphism

Let & and &, be regular surfaces, and f : & — & smooth.

1. fis alocal diffeomorphism at p € & if:

« There exists An open set V C & with p € V;
. f(V)C &, is open;
o f: V — f(V)is smooth between surfaces.

2. f is a local diffeomorphism in &7, if it is a local diffeomor-
phism at each p € §7.

3. & islocally diffeomorphic to &, if for all p € & there exists
f local diffeomorphism at p.

Definition 3.36: Tangent vectors and tangent plane

Let & be a surfaceand p € §.

1. v € R® is a tangent vector to & at p, if there exists a smooth
curvey : (—¢,¢) — R such that

y(—ee)c S, y(O)=p, v=y(0).

2. The tangent plane of § at p is the set

T8 ={ve R® : v tangent vector of & at p}.
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Lemma 3.37: Curves with values on surfaces

Leto : U — R® be a regular chart and & := o(U). Let p € § and
(ug,v) = 6~ (p). Assumey : (—¢,¢) — R? is a smooth curve such
that

y(-e9)C S, y(O)=p.

There exist smooth functions u,v : (—¢,¢) — R such that

y@®) =o(u(),v(®)), vt € (—¢e¢), u(0)=uy, v(0)=1p.

Theorem 3.38: Characterization of Tangent Plane

Leto : U — R be a regular chart and & := g (U). Let p € §. Then
T,8 = spanfo,,0,} :={lo, + po, : A peR},

where g, and @, are evaluated at (u,v) = 6™ (p).

Theorem 3.39: Equation of tangent plane

Leto : U — & be regular, § =a(U). Letp € $ and
n :=0,(uv)xo,wv), Wv):=c'(p).

The equation of the tangent plane T,,§ is given by

x-n=0, vx eR3.

Example 3.40: Calculation of tangent plane

Question. For u € (0,27), v < 1, let § charted by
o(u,v) = (m cos(u), V1 — vsin(u), v) .
1. Prove that & charts the paraboloid x? + y? — z = 1.
2. Prove that o is regular and compute n = o, x 7,
3. Give a basis for T,§ at p = (V2/2,42/2,0).
4. Compute the cartesian equation of T,
Solution.
1. Denote o(u,v) = (x, y,z). We have

2437 = (VT veos)’ + (VI vsin(w))’

=1l-v=1-z.

2. We compute n = ¢, x 0, and show that ¢ is regular:

o, = (—\/1 — vsin(u), V1 — v cos(u), 0)
o, = (—%(1 - v)_l/2 cos(u), —%(1 — v)_l/2 sin(u), 1)

n=o0,x0, = (\/1 —vcos(u),Vl—vsin(u),%) 0

3. Notice that o (7/4,0) = p. A basis for T,$ is

o, (E,o) = (—Q Q,o) ,

4 2 2
o (50)-(--5).




4. Using the calculation for n in Point 2, we find

(5)-(222)
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The equation for TPoS’ is x - n = 0, which reads

\/§x+x/§y—z=0.

Definition 3.41: Standard unit normal of a chart

Let & be a regular surface and ¢ : U — R® a regular chart. The
standard unit normal of ¢ is the smooth function

N,: U—>R}, N,= 2 %

low %oyl

Example 3.42: Calculation of N
Question. Compute the standard unit normal to
u,v €R.

o(u,v) = (" u+v,v),

Solution. The standard unit normal to o is

loy x oy =1+ 2e%

_(1,—e"e")

\J1 + 2e%u

o'u = (eu’ 1’0) H] o-v = (051> 1)5

o,x0, =(1,—€"e*) Ny

Definition 3.43: Unit normal of a surface

Let & be aregular surface. A unit normal to § is a smooth function
N: & — R3 such that

N(p) L TS,

INpI=1, vpes.

Definition 3.44: Orientable surface

A regular surface & is orientable if there exists a unit normal
N: & — R® and an atlas & such that

Noo =N, Vo edA.

Definition 3.45: Differential of smooth function

Let & and & be regular surfacesand f: & — & asmooth map. The
differential dp, f of f at p is defined as the map

dpf : Tp$ = Tf(p)g’ dpf(v) :=(fy)(0),

withy : (—¢,¢) > & smooth curve, y(0) = p, y(0) = v.

Example 3.46: Computing d, f using the definition

Question. Consider the plane & = {z = 0}, the unit cylinder S =
{x? + y? = 1}, and the map

f: S— &, f(x,9,0) = (cos x,sinx, y).

1. Compute T, S
2. Compute dp, f at p = (uy, v, 0) and v = (4, 1, 0).

Solution.
1. A chart for & is given by o(u, v) = (u, v, 0). Hence,
o, =(1,0,0), o,=(0,1,0),

and the tangent space is

T,8 = span{o,, 0.} ={(4,1,0) : A p€eR}.

2. Define the curvey : (—¢,¢) —> & by setting
y(@®) :=0(uy + tA, vy +tp) = (uy +tA, v +tp,0).

Note that y(0) = p and y(0) = v = (A, 1,0). Therefore, the
differential is given by

(f e y)(@) = (cos(ugy + tA), sin(ugy + tA), vy + tp),
(fey) (®) = (—Asin(ug + tA), Acos(ug + tA), ),
dp f(v) = (f 2 ¥)(0) = (—Asin(uy), A cos(up), 1) -

Theorem 3.47: Matrix of dp f

Let &, S be regular surfaces, and f: & — & smooth.

1. dp f(v) depends only on f,p,v (and not ony).
2. dpf is linear, that is, for all v,w € TpoS’ and A, p eR

dp fOW + pw) = 2d f(3) + py (W) .

3. Leto: U— &,6: U — & be regular charts at p, f(p). Let a

and S be the components of ¥ = 6o f 0,50 that

6(a(u,v), f(u,v)) = fle@w,v)), V(uv)eU.
The matrix of dj, f with respect to the basis
{o,,0,} on T, , {65,651 on Tf(p)g,

is given by the Jacobian of the map ¥, that is,

oo ).

Pu By
Example 3.48: Computing the matrix of d}, f

Question. Let & be the cylinder, and S the plane, charted by
o(u,v) = (cosu,sinu,v), &(u,v)=w,v,0),

defined on U = (0,27) x R and U = R2. Define the map
f: 8-> s, f(x,v,2) = (y,x2,0).

Compute the matrix of dj, f with respect to {6,,0,} and {6,,,6.,}.
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Solution. Note that 5'_1(u, v,0) = (u,v). Hence,

Y(u,v) = ! (fle(u,v))) = 6! (f(cosu, sinu, v))
=6 ! (sin(u), cos(u)v, 0) = (sin(u), cos(u)v) .
The components of ¥ are
P(u,v) = cos(u)v.

a(u,v) = sin(u),

The matrix of d, f is hence

o a ow) cos(u) 0
]\P_< Bu Py )_< —sin(w)v  cos(u) ) .

3.3 Examples of Surfaces

Definition 3.49: Level surface

Let f: V — R be smooth, V C R? open. The level surface associ-
ated to f is the set

Sp=f) ={x.y.2) eV : flx,.2) =0}

Theorem 3.50: Regularity of level surfaces

Let f: V — R be smooth, with V C R3 open. Assume
Vi(x,y,2) #0, V(x,y,2)eV.

Then S is a regular surface.

Example 3.51: Circular cone

Question. Prove the circular cone is a regular surface
S ={(x,y,2) € R} : x2+y?=22,2>0}.

Solution. Define the open set V. R and f : V — R by

V={(x,y2)€eR®:

z2>0},  fCey2)=x"+y" - 2%

& is a regular surface, since 8 = § i and

Vf(x,y,2) = (2x,2y,-22) #0, V(x,y,z)€V.

Theorem 3.52: Tangent plane of level surfaces

Let f: V — R be smooth, with V C R3 open. Assume
Vi(x,y,2) #0, V(x,y,2)eV.
Let p € S¢. Then Vf(p) L T, Sy and T, 8¢ has equation

Vi(p)-x=0, VxeR>.

Example 3.53: Unit cylinder

Question. Consider the unit cylinder & = {x? + y? = 1}.

1. Prove that & is a regular surface.

2. Find the equation of Tpé’ atp = (\/5/2, V2/2, 5).
Solution.
1. Define the openset V. C R3>and f: V — R by
V =R3\{(0,0,2) : z€R}, flx,v,2) := x2 +y2 —1.
& is a regular surface, since § = & f and

Vf(x,y,2) = (2x,2y,0) #0, V(x,y,z)€V.

2. Using the expression for Vf in Point 1, we get
vf(p) = Vf(%, %5) = (V2,42,0).

The equation for T,§ is

Vip) x=0 < x+y=0.

Definition 3.54: Ruled surface
A ruled surface is a surface with chart
o(u,v) =y(w) +va(u),
wherey,a: (a,b) — R3 are smooth curves, such that
y(®) and a(#) are linearly independent for all ¢ € (a, b).

y is the base curve and the lines v — va(u) the rulings.

Theorem 3.55: Regularity of ruled surfaces

A ruled surface § is regular if v is sufficiently small.

Example 3.56: Unit Cylinder is ruled surface

Question. Prove that the unit cylinder is a ruled surface.
Solution. The unit cylinder & is charted by

o(u,v) = (cos(w), sin(w), v) = y(u) + va(u)

y(@) = (cos(u), sin(u),0), a=(0,0,1)
& is a ruled surface, since the vectors
y = (=sin(u), cos(u),0), a=(0,0,1)

are orthogonal, and hence linearly independent.

Example 3.57: A ruled surface

Question. Show that the following surface is ruled
S:{(x,y,z)E]R3 © x4+ 10xy + 16x2—z:0} .
Solution. We can rearrange

X% +10xy +16x* —z=0 < (x+8y)(x +2y)=z.




Letu = x + 8y and v = x + 2y. Therefore uv = z and

u—v 4v—u
U—v=6y = y= = x=u—-8y=—.
6 3
It follows that if (x, y, z) € S then
(x,y,2)=<4v;u,%,w/)
= <_§’ %,0) +v(§,—%,u) =y +va(u).
When u # 0, the vectors
4 1 . 11
=(=,—=,u), =(-=,=,0]),
a@ = (5-5u). ¥@=(-5.50)

are linearly independent, as the last component of y(u) is 0. Also
a(0) and y(0) are linearly independent. Thus, § is a ruled surface.

Definition 3.58: Surface of revolution

Lety : (a,b) — R® be a smooth curve in the (x, z)-plane,

y) = (f(v),0,g(v),

The surface & formed by rotating y about the z-axis, called a sur-
face of revolution, is charted byo : U — R3

o(u,v) = (cos(u) f(v), sin(u) f(v), g(v)), U = (0,27) x (a, ).

£>0.

Theorem 3.59: Regularity of surfaces of revolution

A surface of revolution is regular if and only if y is regular.

Example 3.60: Catenoid is surface of revolution

Question. The Catenoid & is the surface of revolution formed by
rotating the catenary y(v) = (cosh(v), 0, v) about the z-axis. A chart
for & is given by

o(u,v) = (cos(u) cosh(v), sin(u) cosh(v), v),

with u € (0,27),v € R. Prove that § is a regular surface.
Solution. Note that f > 0. & is regular because y is regular, as

= (sinh(v),0,1), [y|® =1 + sinh(v)? > 1.

3.4 First fundamental form

Definition 3.61: First fundamental form (FFF)

Let & be aregular surface and p € §. The first fundamental form
(FFF) of & at p is the bilinear symmetric map

I T,8 xT,8 >R, Ip(v,w) I=V-W.
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Definition 3.62: Coordinate functions on tangent plane

Leto : U — R3 be regular, & = a(U). The coordinate functions
on T, & are the linear maps

du,dv: T,8 > R, du(v) :=14, dv(v):=yp,

where v = Ag,, + jio, since {o,,06.} is a basis for T,

Definition 3.63: FFF of a chart

Leto: U — R3 be regular, § =o(U). Define E,F,G: U - R

E=0,-0,, F=0,-0,, G=0,0,.

The FFF of o is the quadratic form #; : T,8 — R
F1(v) = Edu®(v) + 2F du(v) dv(v) + Gdv?(v), Vve TS,

for all p € a(U), with E, F, G evaluated at (u,v) = 6 !(p).

Theorem 3.64: Matrix of FFF

Leto : U — R3 be regular, § = 6(U), and p € 6(U). Then

Lo (v, W) = (du(v), dv(v)) ( v oo )(du(w), dv(w))T

forall v,w € TpcS) . In particular, it holds

F1(v) =I(v,v), VVET,S.

Example 3.65: FFF of Unit cylinder
Question. Consider the unit cylinder with chart
o(u,v) = (cos(u), sin(u),v), (u,v)€(0,27)xR.
Prove that the FFF of o is
Fi = du® +dv?.
Solution. We have

o, = (—sin(w), cos(u),0)
o, =(0,0,1)

F=06,0,=0
G=0,0,=1

E=0,-0,=1 F = du? + dv?

Proposition 3.66: FFF and reparametrizations

Leto: U — R3 be regular, andé: U » R3a reparametrization,
withd =6 ®and ®: U — U diffeomorphism. The matrices #;
and % of the FFF of ¢ and ¢ are related by
E F ~ (E F
, Fi=| = =~ ).
) #=(7 5)

F1 =) F ]9, %=<F G

Example 3.67: FFF of Plane

Question. Let a,p,q € R3, with p, q orthonormal. The plane in




cartesian and polar coordinates is charted by, respectively,

oc(u,v)=a+up+vq, Wv)e R?,
6(p,0) =a+ pcos(@)p + psin(f)q, p>0,0¢€(0,2r).
1. Show that the FFF of o and 6 are

F = du® + dv?,

2. Let ® be the change of variables from polar to cartesian coor-
dinates. Show that

F1=(JO) F Jo.

Solution.

1. Using that p and q are orthonormal,

c,=Pp, G, = cos(@)p + sin(f)q
o,=q 69 = —psin(@)p + pcos(f)q
E=0,0,=1 E:&p-&pzl
F=0,-0,=0 F:&p-&g—o
G=o0,0,=1 5:&9~&9:r2

F1 = du? + dv? F1 = dp?® + p*do?

2. We have ®(p, 0) = (p cos(9), p sin(6)). Then

)

o FJo = (Jo)! jo

_ cos(0) sin(0)
B ( —psin(0) pcos(0)

1 0 ~
:(0 P’ )z'%'

3.5 Length of curves

cos(6)

—p sin(6)
sin(0)

pcos(0)

Proposition 3.68: Length of curves and FFF

Leto: U — R® be regular, § = a(U). Lety: (a,b) — S bea
smooth curve. Then

Y(@®) = o(u(®),v(®)),

for some smooth functions u,v : (a,b) — R, and

b
J JE#? + 2Fuw + G2 dt

a

b
j WOl di =

where @, v are computed at ¢, and E, F, G at (u(t), v(t)).

Example 3.69: Curves on the Cone

Question. Consider the cone with chart
o(u,v) = (cos(u)v, sin(u)v,v), ue€(0,2r),v>0.
1. Compute the first fundamental form of 0.

2. Compute the length of y(¢) = a(t,t) for t € (/2, n).

Solution.
1. The first fundamental form of o is

o, = (—sin(u)v, cos(u)v,0) F=0,06,=0
o, = (cos(u), sin(u), 1)

E=06,-0,=V Fi = v¥du? + 2dv?

G=0,-0,=2

2. y() = o(u(®t), v(t)) with u(t) = t and v(t) = t. Then

F(u(®),v(t)) = F(t,t) =0
Glu@®),v(t)) = G(t, t) =2

u=1,v=1
E(u(®),v(t)) = E(t,t) =

The length of y between /2 and 7 is

J ly@®| dt = J N2 +2dt.
/2 /2

3.6 Local isometries

Definition 3.70: Local isometry

Let & and & be regularand f: & — § smooth. We say that fisa
local isometry, if forallp € §
v-w=d,f(v)-dyf(w), Vv,weT,S.

In this case, & and S are said to be locally isometric.

Proposition 3.71

Local isometries are local diffeomorphims.

Theorem 3.72: Local isometries preserve lengths

Let &, be regular surfaces, f: & — § smooth. Equivalently:

1. fisalocal isometry. ~
2. Lety beacurve on & and define the curvey = fey on §. Then
y and y have the same length.

Theorem 3.73: Local isometries preserve FFF

Let &, be regular surfaces, f: & — § smooth. Equivalently:

1. fisalocal isometry. ~
2. Leto: U —>~c5’ be regular chart of &, and define a chart of &
as6 : U » &, withe = feo. Theno and 6 have the same FFF
E=E, F=F, G=0G.
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Theorem 3.74: Sufficient condition for local isometry

Let S, S be regular surfaces, with chartse : U - Sando: U — §.

Assume that o and 6 have the same FFF. We have

1. The surfaces o(U) and & are locally isometric.




2. Alocal isometry is given by

f:oU)—>S8, f=6o0".

Example 3.75: Plane and Cylinder are locally isometric

Question. Consider the plane & = {x = 0} and the unit cylinder
S = {x? + y? = 1}. Define the function
f:8->8,  £0.y.2) = (cos(y).sin(y), z).

Prove that f is a local isometry (you may assume f smooth).
Solution. The plane & is charted by

o(u,v) =(0,u,v), uveR.
We already know that o is regular, with FFF coefficients
E=1,F=0,G=1

—  F =du® +dv’.

Define 6 = f - o. Therefore,

6(u,v) = f(0,u,v) = (cos(u), sin(u), v).

The FFF of 6 is
6, = (—sin(u), cos(u), 0) F= 6,6,=0
&, =(0,0,1) G=6,-6,=1
E=6,-6,=1 F1 = du? + dv?

Thus, o and 6 have the same FFF. Since &/ = {0} is an atlas for S,
by Theorem 1.74 we conclude that f is a local isometry of & into &.

J

Example 3.76: Plane and Cone are locally isometric

Question. Consider the cone without tip
S ={(x,7,2) €R®: x*+y? =22, z> 0},
and the plane S ={z=0}L
1. Compute the FFF of the chart of the Cone
c:U—->8,  a(p0)=(pcos(®), psin(0), p),
Uz{(p,@) €ER?: p>0,0¢ (0,271)} .
2. Compute the FFF of the chart of the plane
6:U—>8,  6(p0) = (apcos(bh), ap sin(bd),0),
where a > 0 and b € (0, 1] are constants.

3. Prove that f =6 - o !is alocal isometry between & and S ,

for suitable coefficients a, b.
Solution.
1. As seen in Example 1.71, the coefficients of the FFF of g are

E=2, F=0, G=p’.

2. Note that 6 is well defined for all (p,0) € U, as

0e(0,2r), be(0,1] = bOe(0,2m).
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The coefficients of the FFF of 6 are

&, = a (cos(b0), sin(b6), 0) F=6,69=0
&9 = abp (—sin(b0), cos(b0),0) G =6y - 69 = a’b?p?
T _ ~ _ 2
E= 0, 0,=a
3. Imposing that E= E, F=FandG = G, we obtain
a® =2 d =1 == a:\/i,bzi.
V2

Note that a > 0 and 0 < b < 1, showing that a, b are admissible.
Hence, for a J2and b = 1 / V2, the charts ¢ and & Llave
the same FFF. By Theorem 1.73, we conclude that & and & are

locally isometric, with local isometry given by f =6 oo™ L.

3.7 Angle between curves

Definition 3.77: Angle between curves
Let & be a regular surface, and y, y curves on § intersecting at

y(t) =p =y(t).

The angle 6 betweeny andy is

y(to) - ¥(t)
ly ol it

Theorem 3.78: Angle between curves and FFF

Let & be a regular surface, o regular chart at p, and y,y curves on
& intersecting at y(fy) = p = y(%). There exist smooth functions
u, v, i, v such that

Y@ =o(u®),v®), y@) =ou),v@)).

The angle between y and y is
Euii + F(ub + i) + G

cos(6) = .
(Eu? + 2Fuv + Gv2)Y/2(Ed” + 2Fiv + Gv )1/2

with E, F, G evaluated at (u(ty), v(ty)), and 1, v, iL, ¥ at t.

Example 3.79: Calculation of angle between curves
Question. Let S be a surface charted by
o(u,v) = (u,v,e*) .

1. Calculate the FFF of 0.
2. Calculate cos(#), where 0 is the angle between the two curves

y(®) = a(u(t), v(t)),
y(®) = o@@), v(t)),

ul®) =t,v(t) =t,
ut)=1,v@)=t.

Solution.




1. The coefficients of the FFF are
o, =(1,0,e""v)
o, =(0,1,e""u)

E(u,v) = 1+ *“Wv?

F(u,v) = e#“Vuvy

G(u,v) = 1+ e®“Vy?

2. y and y intersect at y(1) = y(1) = 6(1,1). We compute

w(1) =1 E(1,1)=1+¢?
v(1) =1 F(1,1) = ¢?
(1) =0 G(1,1) =1+¢?
(1) =1

Therefore, the angle 0 satisfies

1+ 2¢2

cos(0) = |1+ 2€?
= - / -
N2+ et 1+e2 V2T 2

3.8 Conformal maps

Definition 3.80: Conformal map

Let &, & be regular surfaces, f: & — & local diffeomorphism. We
say that f is a conformal map, if forallp € &

0=6, VV,WETPCS’,

. Q is the angle between v and w,
« 0 1is the angle between d, f(v) and d,, f(w).

In this case, we say that & and & are conformal.

Proposition 3.81

Local isometries are conformal maps.

Theorem 3.82: Conformal maps and FFF

Let §, & be regular surfaces, f: & — § a local diffeomorphism.
Equivalently:

1. f is a conformal map.

2. Leto: U —>~o$’ be regular chart of &, and define a chart of S
asd : U — &, witho = f o 0. Then the FFF of o and ¢ satisfy
971 =Mu,v)%, V(uv)eU,

for some smoothmap A: U — R.

Theorem 3.83: Sufficient condition for conformality

Let S, S be regvular surfaces, with chartso: U » Sande: U — S.
Assume that ¥ = AF for some A : U — R. We have

1. The surfaces 6(U) and § are conformal. _
2. A conformal map is given by f : 6(U) — & with f =601
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Example 3.84: Stereographic Projection

Question. Consider the unit sphere $2 = {x? + y? + z2 = 1} and
define the surface & = $%2 \ {N}, where N = (0,0, 1). Consider the
plane & = {z = 0}. The Stereographic Projection is

Y o).
1—-2z

Prove that f is a conformal map.

Solution. It is easy to prove that f~! = ¢, with

X
5

f: cS’—>cS~’, f(x,y,z)z(1 .

2u v 2 )
Wi+ W +v2 41w +vi+1/)

o(u,v) = (

It is straightforward to compute that the FFF of o is

4

F1 = A(u, v)(duz + de) s m .

Au,v) =

Let6 = f 0. Since o = f_l, we have that 6(u,v) = (u,v,0). As
already computed, the FFF of 6 is #; = du? + dv?. Therefore,
1

SF.

F =
1=

Since o/ = {6} is an atlas for &, by Theorem 3.82 we conclude that
f is a conformal map.

Definition 3.85: Conformal parametrization

Let 6: U — R> be regular. We say that ¢ is a conformal
parametrization if the FFF of ¢ satisfies

F1 = My, v(du? + dv?),

for some smooth function A: U — R.

Example 3.86: Mercator projection

Question. Prove that the parametrization of $? is conformal
o(u,v) := (cos(u) sech(v), sin(u) sech(v), tanh(v)) .
Solution. Recall the identities sechz(v) + tanh? (v) =1and

sech(v)’ = —sech(v) tanh(v), tanh(v)’ = sechz(v).

The chart o is a conformal parametrization because the FFF is

6, = sech(v) (— sin(u), cos(u), 0)

6, = sech(v) (— cos(v) tanh(v), — sin(u) tanh(v), sech(v))
E=6,-6,= sechz(v)(cosz(u) +sin’(w)) = sechz(v)
F=6,6,=0

G=6,6,= sechz(v)(tanhz(v) + sechz(v)) = sechz(v)

9

1= sechz(v) (du2 + dvz) .

Theorem 3.87: Conformal parametrizations preserve angles

Leto be a conformal parametrization, and y, (), y,(¢) be curves in R?
such thaty, (f) .y, (f) make angle . Lety, = ooy, andy, = ooy,.
Then y, (t;) ¥, (t) also make angle 6.




3.9 Second fundamental form

Definition 3.88: Second fundamental form of a chart
Leto: U > R3 be regular, § = o(U). Define L, M,N: U - R
L:=0,,-N, M:=0,,N, N:=0,,"N,

where N is the standard unit normal to 6. The second fundamen-
tal form (SFF) of o is the quadratic form %, : T,8 - R

Fo(v) = Ldu?(v) + 2M du(v) dv(v) + N dv?(v), Vv € TS,

for all p € a(U), with L, M, N evaluated at (u,v) = 6 '(v), and du,
dv the coordinate functions in Definition 1.62.

Example 3.89: SFF of Plane

Question. Let a,p,q € R3, with p, q orthonormal. The plane is
charted by
o(u,v)=a+up+vq, (u,v)eR?.

Prove that the SFF of o is %, = 0.
Solution. We have that %, = 0, since

0,=q, Oy =0y, =0,,=0,
M=06,,-N=0, N=0,, -N=0.

o, =P,
L=06,-N=0,

Example 3.90: SFF of Unit cylinder

Question. Consider the unit cylinder with chart

o(u,v) = (cos(u), sin(u),v), (u,v)€ (0,27)xR.

Prove that the SFF of o is

!0/72 = —du2 .

Solution. We have
0, X0
o, = (—sin(u), cos(u),0) - MTVH
u v

= (cos(u), sin(w), 0)
L=0, N=-1
M=0, N=0
N=o,,-N=0
Fy = —du?

o, =1(0,0,1)

G = (— cos(w), - sin(u), 0)
Oyy =04, =0

o, xo, = (cos(u), sin(u),0)

"6u x o-v" =1

Remark 3.91: SFF and reparametrizations

Leto: U — R3? be regular, and 6 : U - Ra reparametrization,
withe =6 °®and @: U — U diffeomorphism. The matrices 7,
and %, of the SFF of ¢ and ¢ are related by

where the formula holds with the plus sign if det J® > 0, and with
the minus sign if det J® < 0.

iﬂﬁiﬂ
N TP\ MmN

~

M

~

Fo = 2(JO) FpJ©, Fy = (
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3.10 Gauss and Weingarten maps

Definition 3.92: Gauss map

Let & be an oriented surface with standard unit normal N. The

Gauss map of § is

Cs: 8§ —>8, Ze(p) :=N(p).

Definition 3.93: Weingarten map

Let & be an orientable surface with Gauss map & : & — $2. The
Weingarten map 7}, 5 of § at p is

Wps: TpS > TS, Wp,(g(v) = —dp?(v).

Lemma 3.94

Let § be an orientable surface with Weingarten map %}, ¢, and o a
regular chart at p. Then
Wp,é’(au) =—-Ny,, Wp,é’(av) =-N,,

where 6,,6,,N,, N, are evaluated at (u,v) = 6~ !(p).

Definition 3.95: SFF of a surface

Let & be an orientable surface with Weingarten map %}, 5. The SFF
of & at p is the bilinear map

I : T,8 xT,8 > R, IL(v,w) :=Wp (V) - w.

Theorem 3.96: Matrix of the SFF
Leto : U — R3 be regular, § = (U), and p € 6(U). Then
1, w) = @), dv) [ £ ) dutw), dviw))!
b(v. w) = (du(v), dv(v M N u(w), dviw))',
forall v,w € TpoS’ . In particular, it holds

Fo(v) = 1I,(v,v), VVvET,S.

Theorem 3.97: Matrix of Weingarten map

Let & be an orientable surface with Weingarten map 7%}, . Leto be
aregular chart at p. The matrix of the Weingarten map with respect
to the basis {0, 0, } of T, S is

W =F ' F,

where the FFF and SFF are evaluated at (u,v) = ¢~ (p).

Remark 3.98: Matrix inverse

A matrix A € R®? is invertible if and only if det(A) # 0. In such
case the inverse A™! is computed via the formula

(a b)_l_ 1 (d b
c d) = det(A) \ ¢ a

) , det(A) =ad — bc.




If the matrix is diagonal, then
-1

()%

).

Example 3.99: Weingarten map of Helicoid
Question. The Helicoid is charted by
ueR,ve(0,2m),

o(u,v) = (ucos(v), usin(v), v),

with A > 0 constant. Compute the matrix of the Weingarten map.
Solution. We compute all the derivatives of &

o, = (cos(v), sin(v),0) 0,y = (—sin(v), cos(v), 0)

o, = (—usin(v),ucos(v), 1) 0., = —u(cos(v), sin(v),0)

o-uu = (0’ 05 0)
The FFF and its inverse are

E=0,0,=1

G=o0, 0,=u’+2°

10
7= ain)

The standard unit normal to o is

o, %0, = (Asin(v),—Acos(v),u)

lo, xo,] = Nu? + A2

_ Gux0v _ 1 (Asin(v), —Acos(v),u).
lowxal 25 22
The SFF of 0 is
A
L=0,-N=0 M=0yy N=-——x=—
N = 61/1/ . N =0
0o A
me| L Eer
. 0

Ju? + A2

Finally, the matrix of the Weingarten map is
N S
(uz + /12)1 /2
0

0
W =F'F = 2

- (U2 + 12)3/2

3.11 Curvatures

Definition 3.100: Gaussian and mean curvature

Let & be an orientable surface. Let 7" be the matrix of the Wein-
garten map %}, s of § at p. We define:
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1. The Gaussian curvature of & at p is

K :=det(7'),
2. The mean curvature of § at p is

H := % Te(7),

Notation 3.101: Trace of a matrix

The trace of a 2 x 2 matrix is the sum of the diagonal entries.

Proposition 3.102: Formulas for K and H

Leto: U > R3bea regular chart, and & = ¢(U). Then

LN - M?

_ LG —2MF — NE
- EG-F?° B

2(EG — F?)

Example 3.103: Curvatures of the Plane

Question. Let a,p,q € R3, with P, q orthonormal. Consider the
plane charted by
o(u,v) =a+pu+qv.

1. Compute the matrix of the Weingarten map of o.
2. Compute the Gaussian and mean curvatures of the plane.

Solution.

1. From Examples 1.68, 1.89, the FFF and SFF of o are

() w02

0 1
Therefore the matrix of the Weingarten map is

H=%Tr(“7/)=0.

0 0
0 0

0 0

7/:%1—1%:(0 0

2. The Gaussian and mean curvatures are

K=det(')=0,

Example 3.104: Curvatures of the Unit cylinder
Question. Consider the unit cylinder & charted by
o(u,v) = (cos(u), sin(u),v).

1. Compute the matrix of the Weingarten map of 0.
2. Compute the Gaussian and mean curvatures of §.

Solution.

1. From Examples 1.65, 3.90, the FFF and SFF of & are

ae(11) = (3 1)

0 1




Therefore the matrix of the Weingarten map is

-1 0
0o o0/

2. The Gaussian and mean curvatures are

— -1 _
W =F Fﬁz_(

K = det() = 0, H:%Tr(%:—%.

Theorem 3.105: Eigenvalues of Weingarten map

Let & be an orientable surface and o a regular chart at p. Let 7 be
the matrix of the Weingarten map %}, ¢ with respect to the basis
{0,,0,} of T,&. Then

1. There exist scalars K,k € R and an orthonormal basis {t;, t,}
of T, & such that

Wos(t) =xity, Wy s(ty) =Koty
2. Let A, A, pi1, 15 € R be such that
ty = Aoy + oy, ty =40y + 1o,y

Denote x; = (A4, 1) and x5 = (A3, i1p). Then kq, k, are eingen-
values of 7" of eigenvectors x; and x,

WXI =Ki1Xq, WXZ = KoXo .
In particular, the matrix 7" is diagonalizable, with

@ = P~1DP, D:(K1 0), P:(Al ’12).
0 K M Mo

Definition 3.106: Principal curvatures and vectors

Let & be an orientable surface. Let 7}, 5 the Weingarten map of §
at p. We define:

1. The principal curvatures of & at p are the eigenvalues xq, xy
of Wp,é’ .

2. The principal vectors corresponding to x; and x, are the
eigenvectors t,, t; of 7}, 5.

Remark 3.107: Computing principal curvatures and vectors

Leto : U — R3 be a regular chart and & = a(U).

1. Compute the FFF and SFF of o, and the matrix of the Wein-
garten map
W = =G/: 171(0/72 .

2. Compute the eigenvalues of 7, by solving for A the equation
det(# —AI) =0.
The two solutions are the principal curvatures k; and .

3. Find scalars A, p which solve the linear system

A p—
(W—Kﬂ)( L )—0.
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The solution(s) gives the eigenvector(s) of %"
x; = (4 p)
corresponding to the eigenvalue k;.

4. The principal vector(s) associated to k; is

ti:Mu+/'lo-V

Remark 3.108: The case of 7" diagonal

Leto : U — R3 be aregular chart and & = 6(U). Assume the matrix
of the Weingarten map is diagonal

[ O
(3 0)

Then, the eigenvalues of 7" are k; and x,, with eigenvectors

x; =(1,0), x,=1(0,1).
Therefore x;,x, are the principal curvatures of &, with principal
vectors given by

ty=0,, tL=o0,.

Proposition 3.109: Relationships between curvatures

Let & be an orientable surface. Then

K1 + K
g=4 2’
2

ki:H:I:\/Hz—K.

K = K1Kg,

Example 3.110: Principal curvatures of Unit Cylinder
Question. Consider the unit cylinder charted by
o(u,v) = (cos(u), sin(u),v).

Compute the principal curvature and principal vectors.
Solution. By Example 3.104, the matrix of the Weingarten map is

-1 0
(3 o)
Since % is diagonal, the eigenvalues are the diagonal entries of %
and the eigenvectors are

X = (1’0), Xy = (0, 1)

Therefore, the principal curvatures and principal vectors are

K1 = -1 . Ky = O,
t; =0, = (—sin(u), cos(v),0),

t, =0, =(0,0,1).




Example 3.111: Curvatures of Sphere

Question. Consider the chart for the sphere
o(u,v) = (cos(u) cos(v), sin(u) cos(v), sin(v)),

where u € (0,27), v € (—r/2,7/2). Prove that
o cos’(v) 0 10
Jl_g?‘( 0 1)’ W‘(o 1)’

K=H=x=Kky=1, tj=0,, t,=0,.

Solution. Compute the FFF of &

o, = (—sin(u) cos(v), cos(u) cos(v), 0)

o, = (—cos(u) sin(v), — sin(u) sin(v), cos(v))
E=0, 0, =cos’(v)
F=06,-0,=0
G=0,-0,=1

7 :( cos;(v) (1) ) ’

Moreover

6, % 0, = (cos(u) cos?(v), sin(u) cos?(v), cos(v) sin(v))

loy x o = cos(v)| = cos(v),
where we used that cos(v) > 0 since v € (—x/2, 7/2). Therefore,

N = (cos(u) cos(v), sin(u) cos(v), sin(v))
0, = (—cos(u) cos(v), — sin(u) cos(v), 0)
0,y = (sin(u) sin(v), — cos(u) sin(v), 0)
o,, = (—cos(u) cos(v), — sin(u) cos(v), — sin(v))
L=06,, N =cos?(v)
M=0,,-N=0
N=o,,-N=1

Hence, the SFF and matrix of the Weingarten map are

2
0 1 0
‘%:<COSO(V) 1)’ ‘7/:971_19/72:<0 1)'

Since %’ is diagonal, the principal curvatures and vectors are

K1=ky=1, t;=0,, t, =0,.

Finally, the mean and Gaussian curvatures are

_K1+K2
2

H =1, K=Kiky=1.

3.12 Normal and Geodesic curvatures
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Definition 3.112: Darboux frame

Let & be a regular surface,y : (a,b) - & a unit-speed curve. The
Darboux frame of y at ¢ is the triple

. N.Nxyj,

where y is evaluated at £, and N is the standard unit normal to &,
evaluated at p = y(2).

Proposition 3.113: Darboux frame is orthonormal basis

Let & be a regular surface,y : (a,b) - & a unit-speed curve. The
Darboux frame is an orthornormal basis of R> for all ¢ € (a,b).

Proposition 3.114: Coefficients of y in the Darboux frame

Let & be a regular surface, y : (a,b) > & a unit-speed curve. Then

V=t N+xs Nxy),
where N is evaluated at p : = y(t) and ,, k, are scalars depedent on
p- Moreover
ki =7 N, kg =j (Nx),
K2 =Kk + Ké,

Ky =K cos(¢), K, = +ksin(p),

where k is the curvature of y, and ¢ is the angle between N and n,
the principal unit normal of y.

Definition 3.115: Normal and geodesic curvatures

Let & be regular and y : (a,b) > & a unit-speed curve. Let N bet
the standard unit normal to §.

1. The normal curvature of y is
Kn =Y N,
2. The geodesic curvature of y is

KgZY’(NX}.')'

Theorem 3.116: Computing x, with SFF

Let & be a regular surface and y : (a,b) — & a unit-speed curve.
Denote p :=y(¢). We have:

1. The normal curvature x,, satisfies
K = 1. 7).
2. Let o be a chart for & at p = y(¢). Then
y(®) = o (u(®), v(t))
for some smooth functions u,v : (a,b) - R, and
K, = Lu® + 2Muv + Nv2

where L, M, N are evaluated at (u(t), v(t)), and i, v at t.




Example 3.117: Curves on the sphere

Question. Consider the unit sphere $? with chart
o(u,v) = (cos(u) cos(v), sin(u) cos(v), sin(v)).
Show that, for all unit-speed curves on $2,
k) =1.

Solution. Let y(t) = a(u(t), v(t)) be a unit-speed curve on $2. Dif-
ferentiating, we get

y@® = %(cos(u(t)) cos(v(1)), sin(u(t)) cos(v(t)), sin(v(t)))

= (—u sin(u) cos(v) — v cos(u) sin(v),
2 cos(u) cos(v) — v sin(u) sin(v),
v cos(v))
WOI = cos? (Wi + 7
Since y is unit-speed, we have |y| = 1. Therefore,
cos’(V)u + v =1.
By Example 3.111, the coefficients of the SFF of o are
L=cos’(v), M=0, N=1.

By Theorem 3.116, the normal curvature of y is

K, = Li? + 2Muv + Nv? = cos?(v)i? +v2 = 1.

Theorem 3.118: Euler’s Theorem

Let & be a regular surface with principal curvatures Ky, k, and prin-
cipal vectors ty, t,. Let y be a unit-speed curve on &. The normal
curvature of y is given by

K, = Ky cos?(0) + K, sin®(0),

where 0 is the angle between y and t;.

Example 3.119: Curves on the sphere (again)

Question. Same question as in Example 3.117.

Solution. By Example 3.111, the principal curvatures of the unit
sphere are k; = k; = 1. By Euler’s Theorem, for any unit-speed
curve y on the sphere we have

K, = K7 cos2(0) + K, sin®(0) = cos?(0) + sin(0) = 1.

Definition 3.120: «, and k, for regular y

Let & be regular, and y : (a,b) —» & a regular curve. Let y be a
unit-speed reparametrization of y, with

y=re¢, ¢:(ab—@b.

Let &, and K be the normal and geodesic curvatures of y. The nor-
mal and geodesic curvatures of y are

k) = RGO, rgt) = Rg(D)).

Theorem 3.121: Formulas for x, and

Let & be regular, andy : (a,b) > & aregular curve.

1. The normal and geodesic curvatures of y are given by

_PN
Iyl°

2. Denote by « the curvature of y. It holds

K
g 3
Iyl

Kn

3. Let o be a chart for & at p = y(¢). Then
y(®) = o(u@®), v(1))
for some smooth functions u,v : (a,b) — R, and

IL0.Y)  Li? + 2Muw + Nv2
L(y.y)  Eu®+2Fuw+Gv?’

Ky, =

with E, F,G, L, M, N evaluated at (u(t), v(t)), and u, v at t.

33

Example 3.122: Calculation of normal and geodesic curvatures

Question. For v # 0 and t # 0, consider the surface chart and curve

o(u,v) = (u v, E) YD =02 0).
v

. Prove that o is regular.

. Compute the principal unit normal to o.

. Prove thaty is regular.

. Compute the normal and geodesic curvatures of y.
. Compute k, the curvature of y. Verify that

gl W N

Solution.
1. The chart o is regular because

1
S

1
auxav:(—;,%,l)io

2. The principal unit normal is

1/2
o x| = (u? +v? +v4)
u vik — vz
N = o, %0, (—v,u,vz)

a 1/2°
lowxanl (2 442 4 y1)Y

3. The curve y is regular because

y@®) =o(t?,t) = (%, 1,1)
y@® =t 1,1)=0




4. Compute the following quantities

_ 2
(212 +1)1/2

Nxy=(1+ 2t2)1/2 (0,1,-1)

@] =22 @22 + 1)V/2 j-N=

7(®) = (2,0,0)
(-1,t,1)

N@#%,t) =
(22 +1)"°

7-(Nxy)=0

The normal and geodesic curvatures are
Ky = rN_ L
P @2y
_ V- (Nxy)
Kg=———— =0

& .13
Iyl
5. The curvature of y is
yxy:(O’Z,_2)9 ”}'XY"=23/2
y <yl 1
K=

R

Thus k = —«,. Since k; = 0, we conclude that K% = K2 + Kg.

Proposition 3.125: Gaussian curvature and local shape

Let & be a regular surface, with K(p) the Gaussian curvature at p.
The point p is

- Elliptic if K(p) > 0,
- Hyperbolic if K(p) < 0,

« Parabolic or Planar if K(p) = 0.

3.13 Local shape of a surface

Theorem 3.123: Local structure of surfaces

Let & be aregular surface and p € &. In the vicinity of p, the surface
& is approximated by the quadric surface of equation

z= % (x%k1(p) + ¥*K2(P))

where x;(p), k2 (p) are the principal curvatures of § at p.

Definition 3.124: Local shape types

Let & be a regular surface, with x;(p) and x,(p) the principal cur-
vatures at p. The point p is

« Elliptic if

k1(p) >0, ,(p) >0 or Kk3(p) <0, Kk(p) <0

» Hyperbolic if

k1 (p) <0 <Ky(p) or Ky(p)<0<Ki(p)

« Parabolic if
k1 (p) =0,1k(p) #0 or Ky(p) #0, k1(p) =0

« Planar if
xk1(p) = k2(p) = 0

Example 3.126: Analysis of local shape

Question. Consider the surface chart
o(u,v) = (u—v,u+v,u2 + v2) .

. Compute the first fundamental form of o.
Compute the second fundamental form of o.
. Compute the matrix of the Weingarten map.
. Show that p = (1, 0) is an elliptic point.

. Can there be points which are not elliptic?

G PN

Solution.
1. The FFF of o is

o,=(1,1,2u)
o, =(-1,1,2v)

F=0,-0,=4uv
G=0, 0, =2(1+2v?)

1+2u? 2uv )

= . = 2 Fi =
E—O’u o, 2(1+2u) (/1 2< 2uv 1+2’\)2

2. The standard unit normal is
o,%x06, =2(v—u,—u—v,1)

1
loy x o] =2 (1 + 2u® + 2v?)2

~ (v—u,—u—-v,1)

N 1
(1+ 22 + 2v2)2
The SFF of 5 is
_1
o = (0,0,2) L=0y,-N=2(1+2u%+27) ?
oy =(0,0,0) M=0,,"N=0
_1
oy =(0,0,2) N=0,, N=2(1+2u+2%) ?
F =(1+2u2+2v2)_% Lo
2 0o 1]

3. The inverse of # is

g1 _ 1 G -F
U " det(F)\ -F E
_ 1 1+2v2 —2uv
T 2(1+ 202 +202) \ —2wv 14207

The matrix of the Weingarten map is

— -1
W =F\F

B 1 (1+2v2 —2uv )

- 3\ =2 1+ 2u?
(1 + 2u2 + 2v2)2 w “




4. For u = 1 and v = 0 we obtain

3
1 ({10 372
W:—( ):
3
33\ 03 (0

Therefore the principal curvatures at p are

0
1 .
3 2

3 1
ki(p)=32>0, Kky(p)=312>0.
Therefore p is an elliptic point.

5. No. This is because the Gaussian curvature is

1

K=det(#) = ——— >0
@) (1 + 2u? + 2v2)?

By Proposition 3.125 we conclude that every point is elliptic.

3.14 Umbilical points

Definition 3.127: Umbilical point

Let & be a regular surface, with x;(p) and x,(p) the principal cur-
vatures at p. We say that p is an umbilical point if

k1(p) = K2(p) -

Theorem 3.128: Structure theorem at umbilics

Let & be a regular surface such that every point p € & is umbilic.
Then & is an open subset of plane or a sphere.

Proposition 3.129: Criterion for umbilics

Let & be a regular surface. The point p is umbilical if and only if
H?*(p) = K(p).

In particular, p cannot be umbilical if

K(p)<o.

Proposition 3.130: Chart criterion for umbilics

Let 0 : U — R be a regular chart and & = a(U). A point p is
umbilic if and only if there exists a scalar x such that

gz :Kgl.

Example 3.131: Plane and Sphere

1. If the plane is charted as in Example 3.103, the FFF and SFF are

A1) m(i0)

Therefore 5 = k% with k = 0, and all points are umbilical.

0 0
0 0
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2. If the sphere is charted as in Example 3.111, the FFF and SFF are

cos’(v) 0 )

91:92:( 0 1

Since 5 = %1, all points on the sphere are umbilical.

Remark 3.132: How to find umbilics
Condition &, = k% is equivalent to

(E,F,G)x(L,M,N)=0.

In practice, umbilics can be found by solving the above equations.
Common factors may be discarded, if convenient.

Example 3.133: Local shape of the Monkey Saddle
Question. Consider the Monkey Saddle surface & described by
z=x— 3xy2 .

1. Compute the Gaussian curvature of §.
2. Does & contain any hyperbolic point?
3. Prove that the origin is the only umbilical point.

Solution. The Monkey Saddle is charted by
o(u,v) = (u,v,u> — 3u?).
The FFF of o is

o, = (1,0,3(u? —v?))
o, =(0,1,—6uv)

F=0, 06, =—18uv(u® —v?)
G=0, 0,=1+36u’

E=0,-0,=1+9u?-v?*)?

The SFF of o is

o, x0, = (=3W? —v?),6uv, 1)
lo, xa,] = 1+ 36u?v? + 9(u? — v?)?
=1+ 9u* + 9v? + 18u%v?
=1+ 9u? +v?)?
B (—=3@W? —v?), 6uv, 1)
6,4 = (0,0,6u)
o,, = (0,0,—6v)
oy = (0,0, —6u)

N

L:o’uu.Nzé—u
14 9(u? + v2)2

M:aw~N:_—6v
1+ 9(u? +v2)2

N=0,,-N= bu

J1 4 9(u? +v2)2




1. We have that

EG —F% = (1 +9w? —v?)®)(1 + 36uv?) — (—18uv(u? — v?))?
=1+ 36u%v% + 9(u? — v?)?
=1+ 9u* + 9v* + 18u%v?
=1+49? +v?)?
LN — M? = _M
1+ 9(u? + v%)?

Therefore the Gaussian curvature is

K- LN M? 36(u? +v?)

EG-F? [1+9@u? +v?)?)?"

2. Note that
K<o0, V(uv)=(0,0).

By Proposition 3.125, we conclude that all the points outside of
the origin are hyperbolic.

3. Since K < 0 everywhere except at the origin, Proposition 3.129
implies that points outside the origin cannot be umbilic. At
(0,0), we have

91=du2+dv2, g2=0.

Therefore %, is a multiple of &1, and by Proposition 3.130 we
conclude that (0, 0) is an umbilical point. Note: the matrix of
the Weingarten map is %" = % ' %, = 0. Therefore the prin-
cipal curvatures are k; = k, = 0, showing that (0, 0) is a planar
point.

Figure 3.1: The Monkey Saddle surface z = x> — 3xy?.

Good Luck with the Exam!
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