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Welcome

These are the Lecture Notes of Differential Geometry 661955 for 2024/25 at the University of Hull. I will
use this material during lectures. If you have any question or find any typo, please email me at

S.Fanzon@hull.ac.uk

Up to date information about the course, Tutorials and Homework will be published on the University of Hull
Canvas Website

canvas.hull.ac.uk/courses/73612

Digital Notes
Digital version of these notes available at

silviofanzon.com/2024-Differential-Geometry-Notes

Readings

We will study curves and surfaces in R>, as well as some general topology. The main textbooks are:

« Pressley [6] for differential geometry,
« Manetti [5] for general topology.

Other good readings are the books by do Carmo [2] and Abate, Tovena [1]. I will assume some knowledge
from Analysis and Linear Algebra. A good place to revise these topics are the books by Zorich [7, 8].


mailto: S.Fanzon@hull.ac.uk
https://canvas.hull.ac.uk/courses/73612
https://www.silviofanzon.com/2024-Differential-Geometry-Notes/
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Visualization

It is important to visualize the geometrical objects and concepts we are going to talk about in this course. I
will show basic Python code to plot curves and surfaces. This part of the course is not required for the final
examination. If you want to have fun plotting with Pyhton, I recommend installation through Anaconda or
Miniconda. The actual coding can then be done through Jupyter Notebook. Good references for scientific
Python programming are [3, 4].

If you do not want to mess around with Python, you can still visualize pretty much everything we will do in
this course using the excellent online 3D grapher tool CalcPlot3D. To understand how it works, please refer
to the help manual or to the short video introduction. Another nice tool is Desmos.

! You are not expected to purchase any of the above books. These lecture notes will cover 100% of the
topics you are expected to known in order to excel in the Homework and Final Exam.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk


https://www.anaconda.com
https://docs.conda.io/en/latest/miniconda.html
https://jupyter.org
https://c3d.libretexts.org/CalcPlot3D/index.html/
https://c3d.libretexts.org/CalcPlot3D/CalcPlot3D-Help/front.html
https://c3d.libretexts.org/CalcPlot3D/CalcPlot3D-Help/section-1.html
https://www.desmos.com

1 Curves

Curves are, intuitively speaking, 1D objects in the 2D or 3D space. For example in two dimensions one could
think of a straight line, a hyperbole or a circle. These can be all described by an equation in the x and y
coordinates: respectively

y=2x+1, y=¢, x?+y*=1.
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Figure 1.1: Plotting straight line y = 2x + 1
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Figure 1.2: Plot of hyperbole y = ¢*
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Figure 1.3: Plot of unit circle of equation x? + y? = 1
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Goal

The aim of this course is to study curves by differentiating them.

Question

In what sense do we differentiate the above curves?

It is clear that we need a way to mathematically describe the curves. One way of doing it is by means
of Cartesian equations. This means that the curve is described as the set of points (x,y) € R? where the
equation

fl,y)=c,
is satisfied, where
f:R*>R.
is some given function, and
ceR

some given value. In other words, the curve is identified with the subset of R? given by

C={(xy) eR*: f(x,y)=c}.

For example, in the case of the straight line, we would have

flx,y)=y—2x, c=1.
while for the circle
f(x,y):x2+y2 ,c=1.

But what about for example a helix in 3 dimensions? It would be more difficult to find an equation of the
form

fGy.2)=0

to describe such object.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Figure 1.4: Plot of a 3D Helix

Problem

We need a unified and convenient way to describe curves.

This can be done via parametrization.

1.1 Parametrized curves

Rather than Cartesian equations, a more useful way of thinking about curves is viewing them as the path
traced out by a moving point. If y(t) represents the position a point in R"” at time ¢, the whole curve can be
identified by the function

YRR y=y@).

This motivates the following definition of parametrized curve, which will be our main definition of
curve.

Definition 1.1: Parametrized curve

A parametrized curve in R" is a function
Yy : (a,b) > R".

where

—o<a<b< oo,

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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A few remarks:

The symbol (a, b) denotes an open interval
(a,b)={teR : a<t<b}.

« The requirement that
—0<a<b<

means that the interval (a, b) is possibly unbounded.
For each t € (a,b) the quantity y(¢) is a vector in R".
The components of y(¢) are denoted by

Y(t) = (Y1(t)s seey Yrt(t)) s

where the components are functions
v ¢ (a,b) >R,

foralli=1,...,n.

1.2 Parametrizing Cartesian curves

At the start we said that examples of curves in R? were the straight line, the hyperbole and the circle, with

equations

y:2x+1, y:ex, x2-|-y2:1_

We saw that these can be represented by Cartesian equations

fGy)=c

for some function f : R? — R and value ¢ € R. Curves that can be represented in this way are called level
curves. Let us give a precise definition.

Definition 1.2: Level curve

A level curve in R" is a set C C R" which can be described as

C={(x,.... %) €R" : f(x,...,%,) =c}

for some given function
f:R">R

and value
ceR.

We now want to represent level curves by means of parametrizations.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Definition 1.3
Suppose given a level curve C C R". We say that a curve
Yy : (ab) >R

parametrizes C if

C={n®,....;a(®) : t€(ab)}.

Question

Can we represent the level curves we saw above by means of a parametrization y?

The answer is YES, as shown in the following examples.
Example 1.4: Parametrizing the straight line

The straight line
y=2x+1

is a level curve with
C={(x,y) €R® : f(x,y)=c},
where
flx,y) i=y—2x, c:=1.

How do we represent C as a parametrized curve y? We know that the curve is 2D, therefore we need
to find a function
vy : (ab) >R

with componenets
r(®) = (), y2 (1))

The curve y needs to be chosen so that it parametrizes the set C, in the sense that

C={(n®.r®) : te(ab). (1)

Thus we need to have
(., 9) = (r1:v2) - (1.2)
How do we define such y? Note that the points (x, y) in C satisfy

(x,y)€eC <= y=2x+1.
Therefore, using (1.2), we have that

n=x, p=y=2x+l1
from which we deduce that y must satisfy

@) =2n@) +1 (1.3)

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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for all t € (a,b). We can then choose

n@ :=t,
and from (1.3) we deduce that
Ya(t) =2t + 1.
This choice of y works:
C={(x,2x+1) : xeR} (1.4)
={t,2t+1) : —o0<t< oo} (1.5)
={(r1(®),y2(1)) : — oo <t < oo}, (1.6)

where in the second line we just swapped the symbol x with the symbol ¢. In this case we have to choose
the time interval as

(a,b) = (~00,0).

In this way y satisfies (1.1) and we have successfully parametrized the straight line C.

Remark 1.5: Parametrization is not unique
Let us consider again the straight line
C={(x,y) eR? : 2x+1=y}.
We saw thaty : (—o0,00) — R? defined by
y@®) :=(t2t+1)
is a parametrization of C. But of course any y satisfying
r2(t) = 21 () + 1
would yield a parametrization of C. For example one could choose
=2, p=2pn®O+1=4+1.
In general, any time rescaling would work: the curve y defined by
n®) =nt, yp@=2pE)+1=2nt+1

parametrizes C for all n € N. Hence there are infinitely many parametrizations of C.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Example 1.6: Parametrizing the circle

The circle C is described by all the points (x, y) € R? such that

x + y2 =1.
Therefore if we want to find a curve
Y =Gy
which parametrizes C, this has to satisfy
1+ p@)? =1 (17)

for allt € (a,b).
How to find such curve? We could proceed as in the previous example, and set

() :=t.

Then (1.7) implies
() =N1-1%,

from which we also deduce that
-1<t<1

are the only admissible values of t. However this curve does not represent the full circle C, but only the
upper half, as seen in the plot below.
Simlarly, another solution to (1.7) would be y with

n®=t, pt)=-v1-12,

fort € [—1, 1]. However this choice does not parametrize the full circle C either, but only the bottom half,
as seen in the plot below.
How to represent the whole circle? Recall the trigonometric identity

cos(t)? + sin(t)? = 1
for all t € R. This suggests to choose y as
r1(8) :=cos(t), ya(t) :=sin(p)

for t € [0,2). This way y satisfies (1.7), and actually parametrizes C, as shown below.
Note the following:

If we had chosen t € [0, 4] then y would have covered C twice.

« If we had chosen t € [0, 7], then y would have covered the upper semi-circle

« If we had chosen t € [, 27], then y would have covered the lower semi-circle
Similarly, we can choose t € [7/6,7/2] to cover just a portion of C, as shown below.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Figure 1.8: Plotting a portion of C

Finally we are also able to give a mathematical description of the 3D Helix.
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Example 1.7: Parametrizing the helix
The Helix plotted above can be parametrized by
Y : (—00,00) > R3

defined by
y1(t) = cos(t), yo(t) = sin(t), ys(t) =t.

The above equations are in line with our intuition: the helix can be drawn by tracing a circle while at the
same time lifting the pencil.

1.3 Smooth curves

Let us recall the definition of parametrized curve.

Definition 1.8: Parametrized curve

A parametrized curve in R" is a function
Yy : (a,b) > R".
where

(a,b)={teR : a<t<b},

with
—c0<a<b< oo,

The components of y(t) € R" are denoted by

r® =G, ....ya(1),

where the components are functions
vi i (@b) >R,

foralli=1,...,n.

As we already mentioned, the aim of the course is to study curves by differentiating them. Let us see what
that means for curves.

Definition 1.9: Smooth functions

A scalar function f : (a,b) — Ris called smooth if the derivative

d*f
dt"

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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exists foralln > 1and t € (a,b).

We will denote the first and second derivatives of f as follows:

. df . dif
=g =g
Example 1.10
The function f(x) = x* is smooth, with
df 5 d*f 5
—L = 4x3, — =12x%,
e ¥
a3 d*
—f = 24x, —f =24,
a3 dt*
d*f
=0 forall n>5.
dt"

Other examples smooth functions are polynomials, as well as

) = cos®), f() = sin(®), f@&)=¢'.

Definition 1.11

Lety : (a,b) > R* with
Y(®) = 1), ... ¥,(®)

be a parametrized curve. We say that y is smooth if the components
Y : (a,b) >R

are smooth for all i = 1,...,n. The derivatives of y are

dky L (dkh den)
dik dtk 7 dik

for all k € IN. As a shorthand, we will denote the first derivative of y as

_d_Y_(% dL)

V= e
and the second by
Ly (e,
dt? 2’ a2 )

Dr. Silvio Fanzon

S.Fanzon@hull.ac.uk
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In Figure 1.9 we skectch a smooth and a non-smooth curve. Notice that the curve on the right is smooth,
except for the point x.

X

SHooTH & NoN - shoeTH J’
oALy SHooTH QUTS(DE

THE Po/mmT X

Figure 1.9: Example of smooth and non-smooth curves

We will work under the following assumption.
Assumption

All the parametrized curves in this lecture notes are assumed to be smooth.

Example 1.12

The circle

y(t) = (cos(t), sin(t))

is a smooth parametrized curve, since both cos(¢) and sin(¢) are smooth functions. We have

Yy = (—sin(t), cos(t)).

For example the derivative of y at the point (0, 1) is given by

y(r/2) = (—sin(x/2),cos(r/2)) = (—1,0).

The plot of the circle and the derivative vector at (—1,0) can be seen in Figure 1.10.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Figure 1.10: Plot of Circle and Tangent Vector at (0, 1)
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1.4 Tangent vectors

Looking at Figure 1.10, it seems like the vector

y(r/2) = (=1,0)
is tangent to the circle at the point
y(r/2) =(0,1).
Is this a coincidence? Not that all. Let us look at the definition of derivative at a point:

o Y+ 8) —y@®)
v := lim —— '

If we just look at the quantity
y(+46)—y®)
)
for non-negative §, we see that this vector is parallel to the chord joining y(¢) to y(t+9), as shown in Figure 1.11
below. As § — 0, the length of the chord tends to zero. However the direction of the chord becomes parallel
to that of the tangent vector of the curve y at y(¢). Since

Yyt +6)—y@®) N
5

as  — 0, we see that y(¢) is parallel to the tangent of y at y(t), as showin in Figure 1.11.

y®

Figure 1.11: Approximating the tangent vector

The above remark motivates the following definition.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Definition 1.13: Tangent vector

Lety : (a,b) = R" be a parametrized curve. The tangent vector to y at the point y(t) is defined as

T :=y(t).

Example 1.14: Tangent vector to helix
The helix is described by the parametric curve
Yy : R—>R3

with
Y1(t) = cos(t), y,(t) = sin(t), y5(t) =t.
This is plotted in Figure 1.12 below. The tangent vector at point y(¢) is given by

y(@) = (—sin(t), cos(t), 1) .

For example in Figure 1.12 we plot the tangent vector at time ¢t = 7 /2, that is,

y(r/2) =(-1,0,1).

The above looks very similar to the tangent vector to the circle. Except that there is a z component, and
that component is constant and equal to 1. Intuitively this means that the helix is lifting from the plane
xy with constant speed with respect to the z-axis. We will soon give a name to this concept.

-1.0

-0.5 _05

0.5 _
1.0 1.0

0.0

Figure 1.12: Plot of Helix with tangent vector
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Remark 1.15: Avoiding potential ambiguities

Sometimes it will happen that a curve self intersects, meaning that there are two time instants t; and #,
and a point p € R" such that

p=yt)=y).

In this case there is ambiguity in talking about the tangent vector at the point p: in principle there are
two tangent vectors y(¢;) and y(,), and it could happen that

y(t) #=y(t).

Thus the concept of tangent at p is not well-defined. We need then to be more precise and talk about
tangent at a certain time-step ¢, rather than at some point p. We however do not amend Definition 1.13,
but you should keep this potential ambiguity in mind.

Example 1.16: The Lemniscate, a self intersecting curve
For example considery : [0,27] — R? defined as

Y1) =sin(t), y,(t) = sin(t) cos(t) .

Such curve is called Lemniscate, see Wikipedia page, and is plotted in Figure 1.13 below. The orgin (0, 0)
is a point of self-intersection, meaning that

y(0) =y(7) = (0,0).

The tangent vector at point y(¢) is given by

7@ = (cos(t), cos?(¢) — sin®(1))

and therefore we have two tangents at (0, 0), that is,

7 =y(0)=(1,1), , =y(r) = (-1,1).

1.5 Length of curves

For a vector v € R" with components

its length is defined by

The above is just an extension of the Pythagoras theorem to R”, and the length of v is computed from the
origin.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Figure 1.13: The Lemniscate curve
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o

Figure 1.14: Interpretation of |v| in R?

If we have a second vector u € R", then the quantity

Ju =l =, {Z(ui_"i)z
i=1

measures the length of the difference between u and v.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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o~

N =gl

W

Figure 1.15: Interpretation of |u — v| in R?

We would like to define the concept of length of a curve. Intuitively, one could proceed by approximation
as in the figure below.

y(b,)
Ylts)

rit,) ) 5le,y - o)

Vo)

i)

Figure 1.16: Approximating the length of y
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In formulae, this means choosing some time instants
£y, >ty € (a,b).

The length of the segment connecting y(t;_;) to y(t) is given by

ly@) —y@G-ol -
Thus
Ly) = Y. ly®) -yl - (1.8)
i=1

Intuitively, if we increase the number of points #;, the quantity on the RHS of (1.8) should approximate L(y)
better and better. Let us make this precise.

Definition 1.17: Partition
A partition & of the interval [a, b] is a vector of time instants
P =(ty,...,t,) € [a,b]"!

with
t0=a<t1<...<tm_1<tm=b.

If & is a partition of [a, b], we define its maximum length as

Pl = t—1t_4].
|2 @gﬂlz i1l

Note that | 9| measures how fine the partition & is.
Definition 1.18: Length of approximating polygonal curve

Suppose y : (a,b) — R" is a parametrized curve and & a partition of [a,b]. We define the length of the
polygonal curve connecting the points

Y(@o), y(t), .., y(ty)

m

Ly.P) =) ly@) -yl -

i=1

If | 9| becomes smaller and smaller, that is, the partition & is finer and finer, it is reasonable to say that
Ly, %)

is approximating the length of y. We take this as definition of length.
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Definition 1.19: Rectifiable curve and length

Supposey : (a,b) —» R" is a parametrized curve. We say that y is rectifiable if the limit

Ly) = lim L(y,%)
d |Pl—0 Y

exists finite. In such case we call L(y) the length of y.

This definition definitely corresponds to our geometrical intuition of length of a curve.
Question 1.20

How do we use such definition in practice to compute the length of a given curve y?

Thankfully, when y is smooth, the length L(y) can be characterized in terms of y. Indeed, when § is small,
then the quantity

ly(t +8) —y®
is approximating the length of y between y(¢) and y(¢ + 6). Multiplying and dividing by § we obtain

lr(t+6) —y®l

)
which for small § is close to
ly@I 6.
We can now divide the time interval (a, b) in steps ty, ..., t,, with |t; — t;_;| < J and obtain
ly (&) —y G-l
(&) =y (-0l = ==~ i
1t — 51
= |yl é

since § is small. Therefore

L) = ) ) -yl = Y @l 8.
i=1 i=1

The RHS is a Riemann sum, therefore ,

uwzjnﬂwdt

a

The above argument can be made rigorous, as we see in the next theorem.
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Figure 1.17: Approximating L(y) viay

Theorem 1.21: Characterizing the length of y

Assumey : [a,b] — R" is a parametrized curve, with [a, b] bounded. Then y is rectifiable and

b

Mﬂzj”ﬂ%dt (19)

a

Proof

Step 1. The integral in (1.9) is bounded.
Since y is smooth, in particular y is continuous. Since [a, b] is bounded, then y is bounded, that is

sup [y@)| <C
te[a,b]

for some constant C > 0. Therefore

b
juﬂmmscw—@<m_

Step 2. Writing (1.9) as limit.
Recalling that

Ly)= lim L(y,9%),
Y |#1=0 d
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whenever the limit is finite, in order to show (1.9) we then need to prove

b
1. 2) - | ol d
a
as | 2| — 0. Showing the above means proving that: for every ¢ > 0 there exists a § > 0 such that, if &
is a partition of [a, b] such that || < §, then

b

j WOl dt - Ly, P) <. (1.10)

Step 3. First estimate in (1.10).
This first estimate is easy, and only relies on the Fundamental Theorem of Calculus. To be more precise,

we will show that each polygonal has shorter length than ff ly(@)| dt. To this end, take an arbitrary
partition & = (&, ..., t,,) of [a,b]. Then for eachi = 1,...,m we have

ly (@) =yl =

L L
J y(t)dt) < j Ol dt
fiq ti—g

where we used the Fundamental Theorem of calculus, and usual integral properties. Therefore by defi-
nition

Ly, P) = Y ly@) —yGip)l
i=1

m
< j ol dt
i=1 Jtiq
b
=j Ol dt
a
We have then shown ;
Ly, ) sj WOl di (L)
a

for all partitions &.
Step 4. Second estimate in (1.10).
The second estimate is more delicate. We need to carefully construct a polygonal so that its length is

b
close to |, |y| dt. This will be possible by uniform continuity of y. Indeed, note that y is continuous on
the compact set [a, b]. Therefore it is uniformly continuous by the Heine-Borel Theorem. Fix ¢ > 0. By
uniform continuity of y there exists § > 0 such that
€

b—a

t—sl<é = [y@®) —y©)l < (112)
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for all t,s € [a,b]. Let 2 = (4, ..., t,,) be a partition of [a, b] with |2| < . Recall that

|| = max |t;— 4]
i=1,...m

Therefore the condition | 2| < § implies
i —tiq] <6 (1.13)
foreachi=1,...,m. Foralli=1,...,mand s € [t,_;,t] we have

4

Y(t) —y(ty) = j y(t)dt

)

ti
= L | y(s) + () —y(s))dt

L
~ G5O+ | GO -H)d
li—q
The idea now is that the integral on the RHS can be made arbitrarily small by choosing a sufficiently
fine partition, thanks to the uniform continuity of y on the compact interval [a, b]. In details, taking the
absolute value of the above equation yields

4
ly (&) — y(i—ol = | & — ti-)y(s) + J () —y(s)dt (114)
tiq
We can now use the reverse triangle inequality
[l = Iyl < =yl
for all x, y € R", which implies
lx + ¥l = lx = =9I = Ix[ = |yl
for all x, y € R". Applying the above to (1.14) we get
4
ly (@) —y@-0Dl = & = 1) Iy ()] - J (r(®) —y(s))dt (115)
i
By standard properties of integral we also have
4 L
| o-vorad < [ ho-yo1a.
lia i
so that (1.15) implies
f
ly (&) —y@G—0Dl = @ = -0 Iy ()] - Jt ly(®) —y(s)l dt. (1.16)
i—1
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Since t, s € [t;_q, 1], then
t—sl <t —tial <6

where the last inequality follows by (1.13). Thus by uniform continuity (1.12) we get
W(®) -yl < 3.
—a

We can therefore further estimate (1.16) and obtain

ti
ly (&) = y(G-Dl = (& = -0 [y (] - L ly(®) =y (s)| dt
£

dt.
b—a

> (4 — i) [y (Ol = & — 1)
Dividing the above by t; —t;,_; we get

HORTICEY NN
_— 2 - .
2Ol

Integrating the above over s in the interval [t;_;,t;] we get

ki

ORI E J

li1

POl ds = =t = 1)
—a

Summing overi = 1,...,m we get
b

L(P,p) > j W)l ds—e (117)
a
since
m
Dti—ti) =ty —ty=b-a.
i=1
Conclusion.

Putting together (1.11) and (1.17) we get
b

)

which implies (1.10), concluding the proof.

b
W)l ds— ¢ < L(P.y) < j ¥ ds

a

Thanks to the above theorem we have now a way to compute L(y). Let us check that we have given a
meaningful definition of length by computing L(y) on known examples.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 33

Example 1.22: Length of Circle

The circle of radius R is parametrized by y : [0, 27] — R? defined by

y(@®) = (Rcos(t), Rsin(t)).

Then
y(@®) = (—Rsin(t), R cos(t))
and
HOIENAGESZA0)
= R\/sinz(t) + cos?(t) = R.
Therefore

27

27
Mﬂ=LIM%m:L)Rm=%R

as expected.

Example 1.23: Length of helix
Let us consider one full turn of the Helix of radius R and rise H. This is parametrized by
y(@®) = (Rcos(?), Rsin(t), Ht)

for t € [0, 27]. Then
y(@) = (—Rsin(t), Rcos(t), H),

and
O = 72 + 72 + 72
= \/RZ sin?(t) + R? cos?(t) + H? = \R? + H?.
Therefore

21
1) = | 15Ol de = 2R 1

1.6 Arc-length

We have just shown in Theorem 1.21 that the length of a regular curvey : [a,b] - R" with [a, b] bounded is
given by
b

uw=[nﬂwdt

a
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Using this formula, we introduce the notion of length of a portion of y.
Definition 1.24: Arc-length

Lety : (a,b) = R" be a curve, with (a, b) possibly unbounded. We define the arc-length of y starting at
the point y(#,) as the function s : R — R defined by

t
) := L @)l dr.

b »
S(k) = S { o) Wde
o

ot

Figure 1.18: Arc-length of y starting at y(t;)

Remark 1.25

A few remarks:

+ Arc-length is well-defined

Indeed, y is smooth, and so y is continuous. WLOG assume ¢ > t;,. Then
t
s = | WO de < ¢~ 1) max [FO)] <.
to T€[ty,t]

« We always have

S(to) =0.
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« We have
t>t) = s(t)>0

and
t<ty = s(t)<0.

« Choosing a different starting point changes the arc-length by a constant:

For example define § as the arc-length starting from £,

t
5t) = j @l dr.

fo
Then by the properties of integral

1
s(t) = t ly (@l dz

b))

-1 t
[ + j ()l de

-Ato tO

-1
= | @l dr+3s().

.Jto

Hence
s=c+s

with i
)
ci= | W@l dr.
)
Note that c is the arc-length of y between the starting points y(%,) and y (%,).

+ The arc-length is a differentiable function, with

t

0= 5 | ol dr =1yl

Since y is continuous, the above follows by the Fundamental Theorem of Calculus.

Example 1.26: Circle
The circle of radius R is parametrized by y : [0, 27] — R? defined by

y(@) = (Rcos(t), Rsin(t)).
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Then

y(@®) = (=Rsin(1), Reos(t)),  |y®)| = R.

Therefore, for any fixed ¢, € [0, 2] we have

t t
o) = j (@l dr = j Rdr = (t — 1)R.

In particular we see that § = R is constant.

Example 1.27: Logarithmic spiral
The Logarithmic spiral is defined by y : [0, 27] — R? with

y(®) = (€ cos(z), ¢ sin(1)),
where k € R, k # 0, is called the growth factor. Then

11(2) = e (k cos(z) - sin(t))

o) = € (k sin(t) + cos(t))

and so, after some calculations, )
YOI =y + 73 = (k* + 1)e?™ .

The arc-length starting from ¢, is

t
S(t) = L @)l dr

t

=k + lJ ekt dr
fy
Vk? +1

— T(ekl‘ _ ekto) )

1.7 Scalar product in R"

Let us start by defining the scalar product in R?.
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—— Log Spiral
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Figure 1.19: Plot of Logarithmic Spiral with k = 0.1
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Definition 1.28: Scalar product in R?

Let u,v € R? and denote by 6 € [0, 7] the angle formed by u and v. The scalar product between u and v is
defined by

u-v = |ul|lv|cos(6).

Figure 1.20: Vectors u and v in R? forming angle 0

Remark 1.29

The scalar product is maximized for 6 = 0, for which we have
u-v = lul|lv| cos(0) = ullv|.

It is instead minimized for 8 = 7, for which

u-v = |ul|lv| cos(0) = —|ul|v|.
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Definition 1.30: Orthogonal vectors

Letu,v € R If

we say that u and v are orthogonal.

Proposition 1.31: Bilinearity and symmetry of scalar product
Let u,v,w € R? and 1 € R. Then

« Symmetry: u-v=v-u
« Bilinearity: It holds
AMu-v)=QAu)-v=u-(v),

u-(W+rw)=u-v+u-w.

We leave the proof to the reader. The above proposition is saying that the scalar product is bilinear and
symmetric.

Proposition 1.32: Scalar products written wrt euclidean coordinates

Denote by
e; =(1,0), e, =1(0,1)

the euclidean basis of R?. Let u,v € R? and denote by
u = (ug,up) = uje; + uzep

v = (v, %) = vie; +ne,

their coordinates with respect to e, e;. Then

u-v=u1v2+u2v2.

Proof

Note that
61'61:1, 62'62:1, 61'62262'61:0.

Using the bilinearity of scalar product we have

u-v=(ue; +ugey) - (vieg +e5)
= UiVi€1 - €] T UjVreq - €y + UyViey - €1 + UpVhey - €n

=uw + UsVvo .

The above proposition provides a way to generalize of the scalar product to R"..

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 40

Definition 1.33: Scalar product in R"

Let u,v € R" and denote their coordinates by

U= (U, ....ty), u=Wy,...,v).

We define the scalar product between u and v by

n
u-v:i= Zuivi.
i=1

With the above definition we still have that the scalar product is bilinear and symmetric, as detailed in the
following proposition:

Proposition 1.34: Bilinearity and symmetry of scalar product in R"*

Letu,v,w € R and A € R. Then

o Symmetry: u-v=v-u
« Bilinearity: It holds
AMu-v)=QAu)-v=u-(v),

u-(W+w)=u-v+u-w.

The proof of the above proposition is an easy check, and is left to the reader for exercise.
Definition 1.35
Let u,v € R". We say that u and v are orthogonal if

u-v=20.

Proposition 1.36: Differentiating scalar product
Lety,n : (a,b) > R" be parametrized curves. Then the scalar map
y'n:(ab)—R

is smooth, and

i(.):‘..’..'
dt}"l y-nrty-n

for all t € (a,b).
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Proof

Denote by
Y =0 rn)s 1= 0estn)
the coordinates of y and 5. Clearly the map

n
toy =) yim
i=1

is smooth, being sum and product of smooth functions.
Concerning the formula, by definition of scalar product and linearity of the derivative we have

d d (<
20 m= E(;nm)

Il
NgE
Q.l&

N
Il
—_

" (yim)

I
M=

Yini + Vini
-1

Yy n+y-n,

~

where in the second to last equality we used the product rule of differentiation.

1.8 Speed of a curve

Given a curve y we defined the tangent vector at y(t) to be

y@®.

The tangent vector measures the change of direction of the curve. Therefore the magnitude of y can be
interpreted as the speed of the curve.

Definition 1.37

Lety : (a,b) »> R" be a curve. We define the speed of y at the point y(¢) by
ly @I -

We say that y is a unit-speed curve if

ly®l =1, vie(ab).
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Remark 1.38

The derivative of the arc-length s gives the speed of y:

t
s(t) ¢=L ly(@ldr = s(t) = ly@®l -

The reason why we introduce unit speed curves is because they make calculations easy. This is essentially
because of the next proposition.

Proposition 1.39

Lety : (a,b) — R" be a unit speed curve. Then

P =0
for all t € (a,b).
Proof
Let us consider the identity
n
{ORIOEDWAGES 10N (118)
i=1

Since y is unit speed we have

YOI =1 vie(ab).

and therefore p
(@) =o vie@b). (119)

We can differentiate the LHS of (1.18) to get
G D=rr+yv=2r-v. (1.20)

where we used Proposition 1.36 and symmetry of the scalar product. Differentiating (1.18) and using
(1.19)-(1.20) we conclude

2y -y=0 vte(ab).

Remark 1.40

Proposition 1.39 is saying that if y is unit speed, then its tangent vector y is always orthogonal to the
second derivative y. This will be very useful in the future.
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10 '

¥ UNIT speed .

¥-&=o0

Figure 1.21: If y is unit speed then y and y are orthogonal

1.9 Reparametrization

As we have observed in the Examples of Chapter 1, there is in general no unique way to parametrize a curve.
However we would like to understand when two parametrizations are related. In other words, we want to
clarify the concept of equivalence of two parametrizations.

Definition 1.41: Diffeomorphism
Let ¢ : (a,b) — (a, b). We say that ¢ is a diffeomorphism if the following conditions are satisfied:
1. ¢ is invertible, with inverse ¢! : (@, b) — (a,b). Thus
§lep=ged =1d,
where Id : R — R is the identity map on R, that is,
Id(t) =t, VteR.

2. ¢ is smooth,
3. ¢~1 is smooth.
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Definition 1.42: Reparametrization

Lety : (a,b) > R" be a parametrized curve. A reparametrization of y is another parametrized curve
Y : (a,b) = R" such that )

y(@®) =y(g®) vie(ab), (1.21)
where

¢: (a,b) — (a,b)

is a diffeomerphism. We call both ¢ and ¢! reparametrization maps.

Remark 1.43

A comment about the above definition. Given a parametrized curve y, this identifies a 1D shape I' C R".
A reparametrization y is just an equivalent way to describe I'. For y and y to be reparametrizations of
each other, there must exist a smooth rule ¢ to switch from one to another, according to formula (1.21)

=4

- b I

Figure 1.22: Sketch of 1D shaper Kparametrized by y and y

6-¢

Example 1.44: Change of orientation

The map ¢ : (a, b) — (a,b) defined by
o) :=—t
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is a diffeomoprhism. The inverse of ¢ is given by ¢~ : (a,b) — (&, b) defined by
¢ =t.

Note that ¢ can be used to reverse the orientation of a curve.

Example 1.45: Reversing orientation of circle

Consider the unit circle parametrized as usual by y : [0, 2] — R? defined as

y(@) := (cos(t), sin(2)) .

To reverse the orientation we can reparametrize y by using the diffeomorphism

() 1= —t.

This way we obtainy :=y ¢ : [0,27] — [0, 27],

y(®) = y($(®))
= (cos(—t), sin(—t))
= (cos(t), — sin(1)),

where in the last identity we used the properties of cos and sin. Notice that in this way, for example,

y(z/2)=(0,1), y(r/2)=(0,-1).

2
2

Figure 1.23: Unit circle with usual parametrization y, and with reversed orientation y
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Example 1.46: Change of speed

Let k > 0. The map ¢ : (a, b) — (a,b) defined by
o) =kt

is a diffeomoprhism. The inverse of ¢ is given by ¢~ : (a,b) — (&, b) defined by
ROELS

Note that ¢ can be used to change the speed of a curve:

« If k > 1 the speed increases ,
« If 0 < k < 1 the speed decreases.

Example 1.47: Doubling the speed of Lemniscate

Recall the Lemniscate
y(@® := (sin(t), sin(t) cos(t)), t€[0,27].
We can double the speed of the Lemniscate by using the Using the diffeomorphism
PH(t) :=2t.
This way we obtainy :=y ¢ : [0,7] — [0, 2] with

y(@) = y(¢(t)) = (sin(2t), sin(2t) cos(2t)) .

In this case we have that

() = 2y($()).

The above follows by chain rule. Indeed, ¢ = 2, so that

7 = L G0N = JOren) = 2$).

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry

Page 47

Y

Figure 1.24: Lemniscate curve

Important

The main reason we are interested in reparametrizations is because we want to parametrize curves by
arc-lenght: This means that, for a curve y, we want to find a reparametrization y such that y is unit

speed: .
rl=1.

We will see that this is not always possible.

vt € (a,b).

Definition 1.48: Regular points

Lety : (a,b) > R" be a parametrized curve. We say that:

« y(t) is a regular point if

y({) = 0.

« A point y(t) is singular if it is not regular.

« The curvey is regular if every point of y is regular, that is,

y@® =0

, Vte(ab).

J

Note that when y(t;) = 0, this means the curve is stopping at time ;. Before making an example, let us prove

a useful lemma about diffeomorphisms.
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Lemma 1.49
Let¢ : (a,b) — (a, i)) be a diffeomorphism. Then

dt) =0 Vte(ab).

Proof

We know that ¢ is smooth with smooth inverse
=97 @b) > (ab).

In particular it holds
Y(pt)) =t, Vte(ab).

We can differentiate both sides of the above expression to get

d _
rACICODESY (122)

We can differentiate the LHS by chain rule

IUCOVERICOYO)

From (1.22) we then get

Yp®) dt) =1, vte(ab).

Since on the LHS we have a product, this means that none of the LHS terms vanishes, so that

d) =0, vte(ab).

Example 1.50: A curve with one singular point

Consider the parabola
[:={(x,y)eR?: y=x% -1<x<1}.

This can be parametrized in two ways by y,n : [~1,1] — R? defined as

y® =%, n@=@E1°).

We will see that the above parametrizations are not equivalent. This is intuitively clear, since the change
of variables map should be

o) =13,

This is smooth and invertible, with inverse

¢~ (1) =x.
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However ¢! is not smooth at t = 0, and thus ¢ is not a diffeomorphism. Alternatively we could have
just noticed that

) =3 =  $0)=0,
and therefore ¢ cannot be a diffeomorphism due to Lemma 1.49.
Let us look at the derivatives:

Yy =(@,2t), 7@ = (3t 6t°).

We notice a difference:

« y is a regular parametrization,
« n(t) is regular only for t # 0.

Indeed if we animate the plots of the above parametrizations, we see that:

« The point y(¢) moves with constant horizontal speed
« The point 5(t) is decelerating for ¢ < 0, it stops at t = 0, and then accelerates again for ¢t > 0.

Figure 1.25: Parabola I’

Proposition 1.51: Regularity is invariant for reparametrization
Lety : (a,b) > R" be a parametrized curve and suppose that y is regular, that is,

y@) =0, Vte(ab).

Then every reparametrization of y is also regular.
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Proof

Lety : (a,b) — R" be a reparametrization of y. Then there exist ¢ : (a,b) — (a, b) diffeomorphism such
that ]
7O =y(@®). vte(@b).

By the chain rule we have
70 = £ GO = YHOM0.

Therefore ' ‘
Yy =0 = ylg®)p@) #0. (1.23)

But we are assuming that y is regular, so that
y@@®) =0, vie(ab).

Thus (1.23) is equivalent to ‘ .
YO #0 <=  Ht)#0. (1.24)

Since ¢ is a diffeomorphism, by Lemma 1.49 we have that
dt) =0, Vvte(ab).

By (1.24) we conclude that ' )
y@® =0, vte(ab),

proving that y is regular.
Example 1.52
Let us go back to the parabola
F:={xy)eR?: y=x% -1<x<1},
with the two parametrizations y,n : [~1,1] — R? with
y® =17, 1@ =(E.1°).

We have that
Yy =@,2t), @) = (3t 6t°).
Therefore

« y is a regular parametrization,
« n(t) is regular only for t # 0.

Proposition 1.51 implies that 5 is NOT a reparametrization of y.
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Definition 1.53: Unit speed reparametrization

Let y be a parametrized curve. A unit speed reparametrization of y is a reparametrization y such that
Y is unit speed.

The next theorem states that a curve is regular if and only if it has a unit speed reparametrization. For the
proof, it is crucial to recall the definition of arc-length of a curvey : (a,b) — R", which is given by

t
s@==Lwamm,

for some arbitrary ¢, € (a,b) fixed. Indeed, we will see that for ¢ regular the unit speed parametrization map
can be taken as

p=s"1.
Theorem 1.54: Existence of unit speed reparametrization
Let y be a parametrized curve. They are equivalent:

« Y is regular,
« y has a unit speed reparametrization.

Proof

Step 1. Direct implication.
Assumey : (a,b) » R" is regular, that is,

y@) =0, Vte(ab).

Lets : (a,b) — R be the arc-length of y starting at any point #; € (a,b). By the Fundamental Theorem of
Calculus we have

$(8) =y @I (1.25)

so that
s(#)>0, Vvte(ab).

Since s is a scalar function, the above condition and the Inverse Function Theorem guarantee the ex-
istsence of a smooth inverse

st (@@b) > (ab)
for some a < ﬁ~ Define the reparametrization map ¢ as
§i=s"

and the corresponding reparametrization of y given by the curve

7:@h R, §i=yed.
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We claim that y is unit speed. Indeed, by definition
yi=yep = y=v-¢l=yes,
or in other words
y®) =yGs@®), vie(ab).
Differentiating the above expression and using the chain rule we get
Y@ = () 5() = y(s@)) [y @)

where in the last equality we used (1.25). Taking the absolute value of the above yileds

@l = [r @] ly®l - (1.26)

Since y is regular, we have

ly@®| =0, Vte(ab).
Therefore we can divide (1.26) by |y(¢)| and obtain

@) =1, vte(ab).
By invertibility of s, the above holds if and only if
y@©|=1, vte@b),

showing that y is a unit speed reparametrization of y.
Step 2. Reverse implication.
Suppose there exists a unit speed reparametrization of y denoted by

7:@bh R, p=yed
for some reparametrization map ¢ : (a,b) — (a,b). Differentiating J = y » ¢ and using the chain rule we

get . _
y(@) =y(g(®) $(2).

Taking the norm ‘ -

[r @] = @) $l.
Since y is unit speed we obtain

@O 1 =1, vte(ab). (1.27)

Since ¢ is a diffeomorphism from (4, b) into (a,b), Lemma 1.49 guarantees that

d) =0, Vte(ab).
In particular (1.27) implies )

y(@(t) =0, Vvte(ab).

As ¢ is invertible, we also have

y@) =0, Vte(ab),

proving that y is regular.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 53

The proof of Theorem 1.54 told us that, if y is regular, then
? = y o s_]'

is a unit speed reparametrization of y. In the next proposition we show that the arc-length s is essentially the
only unit-speed reparametrization of a regular curve.

Proposition 1.55: Arc-length and unit speed reparametrization

Lety : (a,b) —> R" be a regular curve. Letj : (a,b) — R" be reparametrization of y, so that
y@®) =y(@Q®), vie(ab).
for some diffeomorphism ¢ : (a,b) — (a, b). Denote by

t
S(t) = L W@l dr, te@b)

the arc-length of y starting at any point ¢, € (a,b). We have:

1. If y is unit speed, then there exists ¢ € R such that

¢t) = +s(t)+c, Vte(ab). (1.28)

2. If ¢ is given by (1.28) for some c € R, then y is unit speed.

Proof

Step 1. First Point.
First note that a unit speed reparametrization y of y exists by Theorem 1.54, since y is assumed to be
regular. Thus assume y is unit speed reparametrization of y. By differentiating both sides of

y®) =y(@®), vie(ab),

we obtain

10 = L70) = 7 6W) §0).

Taking the norms we then have

[yl = [y(¢(®)) $(2)
=[] 1)
= gl

where in the last equality we used that y is unit speed, and so

rl=1.
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To summarize, so far we have proven that

Iyl = 1@, vt e (ab).
Therefore ) ,
() = j @l dr = j 90| dr
t to

By the Fundamental Theorem of Calculus we get

5(1) = |p(@)|
and therefore

p=%4s+c
for some c € R, concluding the proof.
Step 2. Second Point.
Suppose that

$:=+s+c

for some ¢ € R, so that ¢ : (a,b) — (a, b). We have

G(t) = +£5(t) = £ Jy(@)] = 0 (1.29)

where the last term is non-zero since y is regular. Therefore, due to the Inverse Function Theorem, ¢ is
invertible with smooth inverse. This proves that y defined by

Vo=vey, yoi=¢7l
is a reparametrization of y. In particular
Y=ve-¢.
Differentiating the above, and recalling (1.29), we get

7 =y (@) $(t) = y($(®) (IO -

Taking the absolute value of the above yields

ly®l = [i(e@)] @l -

Since y is regular we can divide by |y(t)| to get

Y@@ =1 vie(ab).

Since ¢ is invertible, the above is equivalent to

lF®|=1 vte(ab),

proving that y is a unit speed reparametrization.
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Remark 1.56

Let y be regular. The above proposition tells us that they are equivalent:

1. Computing a unit speed reparametrization of y,

2. Computing s the arc-length of y.

In some cases however, unit speed reparametrization and arc-length are impossible to characterize in
terms of elementary functions, even for very simple curves.

Example 1.57: Twisted cubic
Define the twisted cubicy : R — R> by

y@) = (t,6%,1).

Therefore
y(©) = (1,2t,3t%),

so that
y@®) =0, VteR,

meaning that y is regular. In particular we have

Iyl = N1+ 4t + 9t
so that the arc-length of y is

t
s(t) = J V14472 +9r4dr.
A

Since y is regular, by Proposition 1.55 we know that y admits a unit speed reparametrization y such that
Y=v-9¢

with the diffeomorphism ¢ given by

t
¢@) = £s(t) + ¢ = :I:J N1+4r2 +9rtdr+¢
)

for some ¢ € R. It can be shown that the above integral does not have a closed form in terms of elementary
functions. Therefore the unit speed parametrization y cannot be computed explicitly.
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Figure 1.26: Plot of Twisted Cubic for t between -2 and 2

1.10 Closed curves

So far we have seen examples of:

+ Curves which are infinite, or unbounded. This is for example the parabola
y@® := (1%, VteR,
+ Curves which are finite and have end-points, such as the semi-circle
y(@®) := (cos(t),sin(t)), Vte]l0,x],
+ Curves which form loops, such as the circle
y(@®) :=(cos(t),sin(t)), Vte[0,2r].

However there are examples of curves which are in between the above types.
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Example 1.58
For example consider the curvey : R — R?

y@® ;=@ -1, —t) vteR.
This curve has two main properties:

« Y is unbounded: If define y as the restriction of y to the time interval [1, ), then y is unbounded.
A point which starts at y(1) = (0,0) goes towards infinity.

« y contains a loop: If we define y as the restriction of y to the time interval [—1, 1], theny is a closed
loop starting at y(—1) = (0, 0) and returnning at y(1) = (0,0).

Y

Figure 1.27: Plot of curve y(t) = (t? — 1,13 — 1) for t € [-2,2]

The aim of this section is to make precise the concept of looping curve. To do that, we need to define
periodic curves.

Definition 1.59: Periodic curve
Lety : R — R" be a parametrized curve, and let T € R. We say that y is T-periodic if

y@®) =y@t+T), VteR.

Note that every curve is 0-periodic. Therefore to define a closed curve we need to rule out this case.
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Definition 1.60: Closed curve

Lety : R — R" be a parametrized curve. We say that y is closed if:

+ Y is not constant,
» y is T-periodic for some T # 0.

Remark 1.61

We have the following basic facts:

1. If y is T-periodic, then a point moving around y returns to its starting point after time T.

This is exactly the definition of T-periodicity. Indeed let p = y(a) be the point in ques-
tion, then

y@+T)=y(@=p
by periodicity. Thus y returns to p after time T.

2. Ify is T-periodic, then y is determined by its restriction to any interval of length |T].
3. Conversely, suppose thaty : [a,b] — R" satisfies

d~ dy

_ Y o ¥
Y@ =y®), ~@ =)

for all k € IN. Set
T:=b-a.
Then y can be extended to a T-periodic curvey : R — R" defined by

t—a

J(b—a), vVteR.
b—a

y@®) =y@®, t ::t—l

The above means that y(t) is defined by y(¢) where t is the unique point in [a, b] such that

t=t+k(b-a)
with k € Z defined by
t—a
k:= ,
b—aJ

see figure below. In this way y is T-periodic.
4. If'y is T-periodic, then it is also (—T)-periodic.
Because if y is T-periodic then
yO=y(t-D+T)=yt-T)

where in the first equality we used the trivial identity ¢t = (t—T)+T, while in the second
equality we used T-periodicity of y.
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5. If y is T-periodic for some T # 0, then it is T-periodic for some T > 0.
This is an immediate consequence of Point 4.
6. Ify is T-periodic the y is (kT)-periodic, for all k € Z.
By point 4 we can assume WLOG that k > 0. We proceed by induction:

« The statement is true for k = 1, since y is T-periodic.
« Assume now that y is kT-periodic. Then

Yyt +G&+1)T) =y((t+T)+kT)
=yt +T) (by kT-periodicity)
=y() (by T-periodicity)
showing that y is (k + 1)T-periodic.
By induction we conclude that y is (kT)-periodic for all k € IN.
7. If y is Ty-periodic and T,-periodic then y is (k;T; + kyT,)-periodic, for all ky, k, € Z.

By Point 6 we know that y is k;T;-periodic and k,T5-periodic. Set T := k;T; + ko T,. We
have

Yy +T) =yt +kT1) + k. T5)
=yt +kT) (by kyT5-periodicity)
=y(®) (by k;T;-periodicity)

showing thaty is (k;T; + k,T5)-periodic.

YN

a b t+T t+ 2T t=t+3T

R

Figure 1.28: The points ¢t € Rand { € [a, b] from Point 3 in Remark 1.61. In this skectht =+ 3T, with T = b—a.

Definition 1.62

Let y be a closed curve. The period of y is the smallest T > 0 such that y is T-periodic, that is

Period of y :=min{T : T >0, y is T-periodic}.

We need to show that the above definition is well-posed, i.e., that there exists such smallest T > 0.
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Proposition 1.63

Let y be a closed curve. Then there exists a smallest T > 0 such that y is T-periodic. In other words, the
set
S:={T : T>0, y is T-periodic}.

admits positive minumum
P=minS, P>0.

Proof

We make 2 observations about the set S:

« Since y is closed, we have that y is T-periodic for some T # 0. By Remark 1.61 Point 5, we know
that T can be chosen such that T > 0. Therefore

S+Q.
+ S is bounded below by 0. This is by definition of S.

Thus, by the Axiom of Completeness of the Real Numbers, the set S admits an infimum

P =infS.
The proof is concluded if we show that:
Claim. We have
P =min§.
This is equivalent to saying that
PesS.

Proof of claim.
To see that P € S we need to show that

1. y is P-periodic,
2. P>0.

Since P is the infimum of S, there exists an infimizing sequence {T},},cy C S such that
T,— P.
WLOG we can choose T,, decreasing, that is, such that
T,>T,>..>T,>..>0.
Proof of Point 1. As T,, € S, we have that y is T,-periodic. Then

y@+T1,)=y(t), VvVteR, neN.
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Since T,, — P, we can take the limit as n — oo and use the continuity of y to obtain

y@®) =lim y(¢+7T,) =y(t+P), VteR,
n—>oo

showing that y is P-periodic.
Proof of Point 2. Suppose by contradiction that

Fix t € R. Since T,, > 0, we can find unique
t,€[0,T,], k,€eZ,

such that
t=t, +k,T,,

as shown in the figure below. Indeed, it is sufficient to define

k, := ILJ €Z, t,:=t—k,T,.
Tn

Since T,, € S, we know that y is T,,-periodic. Remark 1.61 Point 6 implies that y is also k,T},-periodic, since
k, € Z. Thus

y(®) =y + k1) (definition of t,)
=y(t) (by k, T,,-periodicity) .

Therefore
y® =y(,), vneN. (1.30)

Also notice that
0<t,<T,, VvnelN.

by construction. Since T,, — 0, by the Squeeze Theorem we conclude that
i, >0 asn— oo,
Using the continuity of y, we can pass to the limit in (1.30) and obtain
y(®) = lim y(t,) = y(0).
Since t € R was arbitrary, we have shown that

y@®) =y(0), VteR.

Therefore y is constant. This is a contradiction, as we were assuming that y is closed, and, in particular,
not constant.
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Y YN

0 1y T, t=t, +k, T},

Figure 1.29: For each ¢t € R there exist unique k, € Z and t, € [0,T,,] such that t = t + k,T,,. In this skecth
k, = 3.

Example 1.64

Some examples of closed curves:

« The circumference
y(@) = (cos(t),sin(t)), teR

is not costant and is 27-periodic. Thus y is closed. The period of y is 2.

« The Lemniscate
y(@) = (sin(t), sin(t) cos(t)), t€R

is not costant and is 27-periodic. Thus y is closed. The period of y is 2.

+ Consider again the curve from Example 1.58
y@® =(@* -1, -1t), teR.

According to our definition, y is not periodic. Therefore y is not closed. However there is a point
of self-intersection on y, namely

p :=1(0,0),
for which we have
p=y(=1) =yQ).

The last curve in the above example motivates the definition of self-intersecting curve.
Definition 1.65: Self-intersecting curve
Lety : R — R" be a parametrized curve. We say that y is self-intersecting at a point p on the curve if
1. There exist two times a # b such that
p=y(@=y®),

2. If'y is closed with period T, then b — a is not an integer multiple of T.
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Remark 1.66

The second condition in the above definition is important: if we did not require it, then any closed curve
would be self-intersecting. Indeed consider a closed curvey : R — R" and let T be its period. Then by
Point 6 in Remark 1.61 we have

Y@ =y(a+kT), VaeR keZ.

Therefore every pointy(a) would be of self-intersection. Point 2 in the above definition rules this example
out. Indeed set b := a + kT, then
b—a=kT,

meaning that b — a is an integer multiple of T.

Example 1.67
Let us go back to the curve of Example 1.58, that is,
y@® =@ -1,2—t), teR.

We have that y is not periodic, and therefore not closed. However p = (0,0) is a point of self-
intersection on y, since we have

p=y(=1)=y@).

Example 1.68: The Limacon
Define the parametrized curvey : R — R? by
y(@®) = ((1 + 2 cos(t)) cos(t), (1 + 2 cos(t)) sin(¢)), VteR.

Such curve, plotted bolow, is called limacon (French for snail). This curve is non constant and 2z-periodic.
Therefore it is closed. The period of y is 277. Moreover we have

y(@) =y(®) =(0,0).

with a = 27/3 and b = 47 /3. Note that

which is not an integer multiple of the period 27. Therefore y is self-intersecting at (0, 0).
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Y

Figure 1.30: Limagon curve
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2 Curvature and Torsion

We have seen how to describe curves and reparametrized them. Now we want to look at local properties of
curves:

« How much does a curve twist?
« How much does a curve bend?

We will measure two quantities:

+ Curvature: measures how much a curve y deviates from a straight line.
 Torsion: measures how much a curve y fails to lie on a plane.

For example a 2D spiral is curved, but still lies in a plane. Instead the Helix both deviates from a straight line
and pulls away from any fixed plane.

2.1 Curvature

We start with an informal discussion. Suppose y is a straight line
y@) =a+tv
with a,v € R3. The tangent vector to y is constant
y@) =v.

Whatever the definition of curvature will be, it has to hold that y has zero curvature in this case. If we further
derive the tangent vector, we obtain

() =0,
Thus y seems to be a good candidate for the definition of curvature of y at the point y(¢).

Suppose now that y is a curve in R? with unit speed. We have proven that in this case
v¥=0.

that is, the vector y is orthogonal to the tangent y at all times. Now let n(¢) be the unit vector orthogonal to
y(t) at the point y(¢). The amount that the curve y deviates from its tangent at y(t) after time ¢t is

(y( +1) —y(®) n@), (2.1)
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as seen in the figure below.

Tt 40)
7 X’[t')

4) This oli ctance
‘LSé-'vw L‘d
(¥le+t) - 58) ) oM

Figure 2.1: Amount that y deviates from tangent is (y(t + t,) —y(t)) - n(t)

Equation (2.1) is what we take as measure of curvature. Since
YO -$O=0 and y@®)-n@®) =0,

we conclude that y(¢) is parallel to n(¢). Since n(t) is a unit vector, there exists a scalar x(t) such that

y(@®) = x(®)n().

As n is unitary, we have

NOES{0]

Now, approximate y at ¢t with its second order Taylor polynomial:

1) = YO + 7O + L + ol

where the remainder o(t) is such that

o(
lim E =0
t0_>0 toz

Therefore, discarding the remainder,

Y@ +1) —y(®) =yt + @tg .
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Multiplying by n(t) we get

(1t + 1) () n®) = y© -ny + T 0z
Recalling that
y®-n@) =0, y@) n@)=x@),

we then obtain

(1t + 1) = y(®) - n(®) = 5 (O

Important

The amount that y deviates from a straight line is proportional to

NOES (O]

We take this as definition of curvature for a general unit speed curve in R".

Definition 2.1

Lety : (a,b) — R" be a unit speed curve. The curvature of y at y(¢) is

@) =@l -

Note that x(t) is a function of time. Therefore the curvature of y can change from point to point.

We now define curvature for curves which are regular, but not necessarily unit speed.

Definition 2.2

Lety : (a,b) - R" be a regular. The curvature of y at y(¢) is

(1) = [y(p®)

where y is a unit speed reparametrization of y, withy =y o ¢.

, Vtel(ab),

Remark 2.3

The above definition is well posed:

« Since y is regular, there exist a unit speed reparametrization y of y.
« Ify is another unit speed reaprametrization of y, withy =y o ¢, then

k¥ (t) = [p((t))

showing that there is no ambiguity in the definition of kY.

>

Indeed, since y and y are both reparametrizations of y, then

r®) =7¢®), ¥ =)
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for some diffeomorphisms qg, q’; Hence

YO =160, ¢:=go@)", (22)
where ¢ is a diffeomorphism, since it is composition of diffeomorphisms. Differentiating
(2.2) we get ' . .

Y(®) = y(¢®)p(@) . (2.3)

Taking the norms of the above, and recalling that y and y are unit speed, we get

gl =1, vt. (2.4)

Since ¢ is a diffeomorphism, we already know that || # 0. As ¢ is continuous, this means
that the sign of ¢ is constant. Thus (2.4) implies

dH)=1 or ¢@t)=-1.

In both cases, we have

-~
I1l
(o)

Differentiating (2.3) we then obtain

Y(®) = y())F () + y(p())p(t)
= PP () .

Taking the norms and using again that || = 1, we get that

[r®)] = [r(6®)] -

Recalling that ¢ = ¢ » (¢)~! we get

()| =

@), vie(ab).

Therefore
kY (t) =

HCONE

P -

Remark 2.4: Methods for computing curvature
In summary, the curvature of a regular curve
Y : (ab) > R"

is defined via unit speed reparametrizations of y. To compute x we do the following:

« We find a unit speed reparametrization y of the regular curve y
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« This can be done by computing s the arc-length of y, and then defining

Pizyed, ¥i=s
+ Then we compute ) )
() = | ®©
« We obtain the curvature of y by )
i (1) = ¥ (©)

When y is regular and has values in R3, there is a way to compute k without reparametrizing. To do this,
we will need the notion of cross product, or vector product. We will see this in the following sections.

m"&‘w

peh =
s v 5@l

¥
\
 : (L) >R e

REGULAR
7 (ab) |K3

N 3D onmu® k ey,
WITHOJIT REPAMnET&%MQ

Figure 2.2: Procedure for computing curvature x

We conclude with two examples in which we compute the curvature k using unit speed reparametrizations.
Example 2.5

Consider the circle of radius R > 0:
y(@®) = (Rcos(t), Rsin(t)), te0,2r].

To compute the curvature of y we need to find a unit speed reparametrization. We have shown that:

1

Yy regular = ¢ =s" " unit speed reparametrization
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where s is the arc length of y:
t
s = | el dr.
fy

In our case

y(@) = (—Rsin(t), Rcos(t)) = |y@®)|=R

and soy is regular. However y is not unit speed, therefore we need to find a unit speed reparametrization.
The arc length starting at t, = 0 is

t
s(t) = J Rdr = tR.
0

The inverse of s is

#(t) 1= s 1(t) = %.

Therefore a unit speed reparametrization of y is

Y i=ye¢

7©) = (Reos () Rsin (%)) -

0= (con(3). o)
0=l 3 )

K0 = O] = %

In this case k() is constant. The curvature also tells us that the smaller the circle, the higher the curvature.
For a large circle, like the Earth, the curvature is barely noticeable.

which reads

We have

Therefore the curvature of y is

Before proceeding with the next example, let us give a short overview of the Hyperbolic functions.
Remark 2.6: Hyperbolic functions

The Hyperbloic functions are the analogous of the trigonometric functions, but defined using the hyper-
bola rather than the circle. Their formulas can be obtained by means of the exponential function e'. We
have:

« Hyperbolic cosine: The even part of the function €/, that is,

el +e! _ el 41 _ 1+e 2

cosh(t) =
®) 2 2¢t 2et
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Hyperbolic sine: The odd part of the function €', that is,
E_et o1 12

sinh(®) = e_z T o 2et

Hyperbolic tangent: Defined by

sinht e —et % —1
tanh(t) = === .
cosht el +e et +1

Hyperbolic cotangent: The reciprocal of tanh for ¢ # 0,

cosht e +et ¥ +1
sinht e —e? e2—1’

cotht =

« Hyperbolic secant: The reciprocal of cosh
1 2 2¢'
sech(t) = = = .
® cosht e +et €2 +1

« Hyperbolic cosecant: The reciprocal of sinh for ¢ # 0,

1 2 2¢!

sinht e —et 2 _1°

csch(t) =

For a plot cosh, sinh, tanh see Figure 2.3 below. The properties of the hyperbolic functions which are of
interest to us are:
1. Identities:
cosh(t) + sinh(t) = ¢
cosh(t) — sinh(t) = e~*
coshz(t) - sinhz(t) =1
sechz(t) — tanhz(t) =1

2. Derivatives:

d . . _
o [sinh(#)] = cosh(t)

d .
o [cosh(t)] = sinh(t)

% [tanh(9)] = 1 — tanh®(t) = —esch’(r)
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3. Integrals:

ot

sinh(u) du = cosh(t) — cosh(t,)

o t

ot

cosh(u) du = sinh(t) — sinh(%;)

Js
iy

J tanh(u) du = log(cosh(t)) — log(cosh(%))

)

10 4
5

= 0
5 —— cosh(x)
— sinh(x)
—— tanh(z)

—10 >
-3 —2 —1 0 1 2

t

Figure 2.3: Plot of cosh, sinh, tanh.

Example 2.7: The Catenary

The catenary is the shape of a heavy chain suspended at its ends. The chain is only subjected to gravity,
see Figure 2.4. This shape looks similar to a parabola, but it is not a parabola. This was first noted by
Galilei, see this Wikipedia page. The profile of the hanging chain can be obtained via a minimization
problem, and one can show it is of the form

y(@®) = (¢,cosh(t)), teR.
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See Figure 2.5 for a plot of y. Let us check if y is regular. We have

y(@®) = (1, sinh(?))

so that
I7]? = 1+ sinh®(®) = cosh®(t) =  |y| = cosh(?).
Note that
cosh(t) > 1
showing that y is regular. However
e+e!

ly (D] = cosh(1) = ~ 1.54,

proving that y is not unit speed. Let us then compute the arc length of y starting at t, = 0

t t
s(t) = J ly(w)| du = J cosh(u) du = sinh(t)
0 0
since sinh(0) = 0. We need to invert s. We have

PN eZt—Zset—1=0,

s=sinh(t) < s= 5

where the last equation was obtained multuplying both sides by e’. Now we substitute
y=e

and obtain
el — 25l —1=0 = y2—23y—1:0 = y=s+tl+s%.

Recalling that y = ¢!, we only consider the positive solution, and obtain that
d=s+\J1+s2 = t=10g(s+\/1+32).
We have proven that the inverse of the arc length s(2) is

Y(t) :=s1(t) = log (t +V1+ t2) :

Therefore
y@® :=yW(®)

is a unit speed reparametrization of y. Substituting {/ and using the definition of y we have

Y@ = (log<t+\/1 +t2),\/1 +t2) :
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We can now compute the curvature. We have:

. 1 t
(1) = ,
4 (\/1+t2 \/1+t2)

st 1
ro= ( (1+2)3/2" (1 + t2)3/2)

Moreover
ot Lt 1
(1423 (1+12)° (Q+12)?

|’

Therefore the curvature is 1

1+62°

k() = [y®)] =

Figure 2.4: The catenary is the shape of a heavy chain suspended at its ends. Image from Wikipedia.

2.2 Vector product in R’

The discussion in this section follows [2]. We start by defining orientation for a vector space.
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—1 1

Figure 2.5: Plot of the catenary curve y(t) = (t, cosh(t)).
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Definition 2.8: Same orientation

Consider two ordered basis of R3
B:(bl,bz,bg), B:(Bl,f)z,f)g).

We say that B and B have the same orientation if the matrix of change of basis has positive determinant.

When two basis B and B have the same orientation, we write

b~b.

The above is clearly an equivalence relation on the set of ordered basis. Therefore the set of ordered basis of
R? can be decomposed into equivalence classes. Since the determinant of the matrix of change of basis can
only be positive or negative, there are only two equivalence classes.

Definition 2.9: Orientation

The two equivalence classes determined by ~ on the set of ordered basis are called orientations.

Definition 2.10: Positive orientation
Consider the standard basis of R3
E = (e, e, €3)

where we set
€q :(1,0,0), 62:(0,1,0), 632(0,0,1).

Then:

« The orientation corresponding to E is called positive orientation of R>.
« The orientation corresponding to the other equivalence class is called negative orientation of R>,

For a basis B of R® we say that:

« Bis a positive basis if it belongs to the class of e.
+ Bis a negative basis if it does not belong to the class of e.

Example 2.11

Since we are dealing with ordered basis, the order in which vectors appear is fundamental. For example,
we defined the equivalence class of

E= (ela €, e3) s

to be the positive orientation of R. In particular e is a positive basis.
Consider instead
E= (ez, €, 83) .
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The matrix of change of variables between E and E is
010
(ez]esles)={ 1 0 0
0 01

and the latter has negative determinant. Thus E does not belong to the class of E, and is therefore a
negative basis.

We are now ready to define the vector product in R>.
Definition 2.12: Vector product in R

Let u,v € R3. The vector product of u and v is the unique vector

uxveR3
which satisfies the property:
Uy up us
(uxv)-w=|v v 1|, VweR>. (2.5)
Wi Wy ws

Here |a;j| denotes the determinant of the matrix (a;;), and

3 3 3
] i=1

with (e, e,, e3) standard basis of R3.

The following proposition gives an explicit formula for computing u x v.

Proposition 2.13

Let u,v € R3. Then

uxv= es. (2.6)
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Proof

Denote by (u x v); the i-th component of u x v with respect to the standard basis, that is,

3
uxv= Z(uxv)iei.
i=1

We can use (2.5) with w = e; to obtain

Uy Uy us
(uxv)-e;=|vy v w|=
1 0 O

U Us
Vo V3

where we used the Laplace expansion for computing the determinant of the 3 x 3 matrix. As the standard

basis is orthonormal, by bilinearity of the scalar product we get

3

(uxv)-e =Z(UXV)iei’e1 = (uxv).

Therefore we have shown

(UXV)lz‘

Similarly we obtain
U
(uxv)y =|m
0
and
5}
(uxv);3=|mw
0
from which we conclude.
Sometimes we will denote formula (2.6) by
uxv=

Let us collect some crucial properties of the vector product.

Proposition 2.14

1. uXv=-vXxu

i=1

Up
Vo
1

U
V2
0

i
251
V1

U

Us
V3

Us
V3

J
U
V2

The vector product in R? satisfies the following properties: For all u, v € R

Us
V3

Uy Uus
Vi V3

Uy U
Vi W

Uy
V3
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2. uxv =0 if and only if u and v are linearly dependent
3. (uxv)-u=0,(uxv)-v=0
4. Forallw e R3,a,b € R
(au+bw)x v =auxv+bwxw

The proof, which is based on the properties of determinants, is omitted.

Remark 2.15: Geometric interpretation of vector product

Let u, v € R? be linearly independent. We make some observations:
1. Property 3 in Proposition 2.14 says that
(uxv)-u=0, (uxv)-v=0.
Therefore u x v is orthogonal to both u and v.
2. In particular u x v is orthogonal to the plane generated by u and v.
3. Since u and v are linearly independent, Property 2 in Proposition 2.14 says that

uxv=0

4. Therefore we have
(xv)-(xv) =fuxv]’ >0

5. On the other hand, using the definition of u x v with w = v x w yields

ul u2 u3
(uxv)-(uxv)= v Wy 3
(uxv); (uxv), (uxv)s

6. Therefore the determinant of the matrix
(ufvju x v)

is positive. This shows that
(u,v,uxv)

is a positive basis of R>.
7. Forallu,v,x,y € R3 it holds

u'x v-Xx

uy vey | (2.7)

(uxv)-(xxy) =

Indeed, one can check that the above formula holds for the standard vectors e;, and thus the general
formula follows by linearity.
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8. Using (2.7) we get

2 u-u v-u
luxvl’ = @xv)-xvy=| 278 VY

= Juf® |v]* — Ju - v[?

= Jul® vI* ~ Juf? [v]* cos*(6)
= [l [v|” (1 - cos*(8))

= Jul® |v|* sin®(6)

= A2

where A is the area of the parallelogram with sides u and v.

A= Irl leng

Figure 2.6: For u, v linearly independent, u x v is orthogonal to the plane generated by u, v. Moreover |u x v|
is the area of the parallelogram with sides u, v, and (u, v, u x v) is a positive basis of R3

Let us summarize the above remark.

Remark 2.16: Summary: Properties of u x v

Let u, v € R? be linearly independent. Then

« u x v is orthogonal to the plane spanned by u, v
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« |u x v| is equal to the area of the parallelogram with sides u, v
« uxvis such that
(u,v,uxv)

is a positive basis of R>.

We conclude with noting that the cross product is not associative, and with a useful proposition for differen-
tiating the cross product of curves in R>.

Proposition 2.17

The vector product is not associative. In particular, for all u,v,w € R3 it holds:

(uxv)xw=@u-w)v—(v-wu. (2.8)

The proof is omitted. It follows by observing that both sides of (2.8) are linear in u, v,w. Therefore it is
sufficient to verify (2.8) for the standard basis vectors e;. This is left as an exercise.

Proposition 2.18
Suppose y,n : (a,b) — R® are parametrized curves. Then the curve
yxn : (a,b) > R

is smooth, and

d . .
E(yxn)zyxnﬂ/xn. (2-9)

The proof is omitted. It follows immediately from formula (2.6).

2.3 Curvature formula in R®

Given a unit speed curve
Yy : (a,b) > R"
we defined its curvature as
NOES (O]
If y is not unit speed then the curvature is not defined. However, when y is regular, then we can find a
unit-speed reparametrization y of y, and compute k as

k() = [y®)] -

Ify is a regular curve in R3, there is a way to compute k without passing through y. The formula for computing
k is as follows.
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Proposition 2.19: Curvature formula
Lety : (a,b) — R3 be a regular curve. The curvature x(t) of y at y(t) is given by

Iy <1
I’

k(t) =

(2.10)

We delay the proof of the above Proposition, as this will get easier when the Frenet frame is introduced. For
a proof which does not make use of the Frenet frame, see the proof of Proposition 2.1.2 in [6].

For now we use (2.10) the above proposition to compute the curvature on specific curves.
Example 2.20

Consider the straight line
y@®) =a+tv

for some a, v € R3 fixed, with v # 0. Then

y@O=v, y@#=0.

Therefore

ly @I = vl =0
showing that y is regular. We have

Yxy=vx0=0.
Therefore the curvature is o
<yl -
K= ——0 = 0
Iyl

as expected.

Example 2.21
Consider the Helix of radius R > 0 and rise H > 0

y(@®) = (Rcos(t), Rsin(t), Ht), teR.
Then

y(@) = (—Rsin(t), R cos(t), H)
y(@) = (—Rcos(t), —Rsin(t), 0)

From this we deduce that

ly®l = VR* + H?,

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 83

showing that y is regular. Finally

novs oY
X . . |€
yxy= novs nove ’
_ R cos(t) H _ | —Rsin(t) H N —Rsin(t) Rcos(t)
~ | =Rsin(t) 0 ¢17] R cos(t) 0 €27 _R cos(t) —Rsin(t)

(RH sin(t), —RH cos(t), R? cos?(t) + R? sin (t))
(RH sin(t), —RH cos(t), R?)

and therefore
ly xyl =R R%2 + H?,

By the general formula we have
1
_ly>xvl _ R®R2+HY): R
T OR2 2
W (r+mz: RHH

We notice the following:

« If H = 0 then the Helix is just a circle of radius R. In this case the curvature is

K==
R

which agrees with the curvature computed for the circle of radius R.

« If R = 0 then the Helix is just parametrizing the z-axis. In this case the curvature is
k=0,

which agrees with the curvature of a straight line.

2.4 Signed curvature of plane curves

In this section we assume to have plane curves, that is, curves with values in R2. In this case we can give a
geometric interpretation for the sign of the curvature. This cannot be done in higher dimension.

Definition 2.22

Lety : (a,b) — R? be unit speed. We define the signed unit normal to y at y(t) as the unit vector n(t)
obtained by rotating y(¢) anti-clockwise by an angle of /2.
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Definition 2.23

Lety : (a,b) — R? be unit speed. The signed curvature of y at y(t) is the scalar x,(t) such that

y(©) = ky()n(1)

Remark 2.24

Notice that since n is a unit vector and y is unit speed, then

k(] = Iyl = (@)

Thus the signed curvature is related to the curvature by

Ks(t) = k().

Remark 2.25

It can be shown that the signed curvature is the rate at which the tangent vector y of the curve y rotates.
The signed curvature is:

« positive if y is rotating anti-clockwise
« negative if y is rotating clockwise

In other words,

+ kg > 0 means the curve is turning left,
+ kg < 0 means the curve is turning right.

A rigorous justification of the above statement is found in Proposition 2.2.3 in [6].

For curves which are not unit speed, we define the signed curvature as the signed curvature of the unit speed
reparametrization.

Definition 2.26

Lety : (a,b) — R? be regular and let ¥ be a unit speed reparametrization of y. The signed curvature
of y at y(t) is the scalar x(t) such that

r(®) = k(®On(),

where n(t) is the unit vector obtained by rotating y(t) anti-clockwise by an angle 7 /2.

The signed curvature completely characterizes plane curves, in the sense of the following theorem.
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Theorem 2.27: Characterization of plane curves
Let ¢ : R — R be smooth. Then:
1. There exists a unit speed curvey : R — R? such that its signed curvature ; satisfies

k() = P(t), VteR.

2. Suppose thaty : R — R? is a unit speed curve such that its signed curvature &, satisfies
Ks(t) =p(t), VteR.

Then
Y=Y

up to rotations and translations.

We do not prove the above theorem. For a proof, see Theorem 2.2.6 in [6].

2.5 Space curves

In this section we deal with space curves, that is, curves with values in R3. There are several issues compare
to the plane case:

+ A 3D counterpart of the signed curvature does not exist, since there is no notion of turning left or
turning right.

« We have seen in the previous section that the signed curvature completely characterizes plane curves.
In 3D however curvature is not enough to characterize curves: there exist y and n space curves such
that

KW=« y=n,

that is, y and n have same curvature but are different curves.

Example 2.28

Let y be a circle of radius R > 0
y(®) = (Rcos(t), Rsin(t),0),

and n be a helix of radius S > 0 and rise H > 0
n(t) = (Scos(t), S sin(t), Ht) .

We have computed that
K = K

1
R’ oS24 [
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If we now choose R = 2 and we impose that k¥ = kT we get

1__5 H? = 25 - §°
R §%?+ H?
Therefore choosing S = 1 and H = 1 yields
=K, y=n.

Therefore curvature is not enough for characterizing space curves, and we need a new quantity. As we did
with curvature, we start by considering the simpler case of unit speed curves. We will also need to assume
that the curvature is never zero.

Definition 2.29: Principal normal vector
Lety : (a,b) — R3 be a unit speed curve with
k(t) =0, Vte(ab).

The principal normal vector to y at y(t) is

1 .
t) := —vy(1).
n(D) 1= VO
Remark 2.30
Since for y unit speed we defined
k() = @I,
we have that
In(®)] =1,

thus n is a unit vector. Moreover n is orthogonal to y, that is,
Yy n=0.

This is because .
yon=—yp=o0,

where the last equality follows fromy -y = 0, being y unit speed.
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4‘ oo
nig) = o) ¥ ()

X

r(t)

Figure 2.7: Principal normal vector n(t) to y at y(t).

Question 2.31

Why is the principal normal interesting? Because it can tell the difference beween a plane curve and a
space curve. See picture below.
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o

Figure 2.8: Left: Principal normal to a circle. Note that n always points towards the origin 0. Right: Principal
normal to a helix. Note that n points towards the z-axis, but never towards the same point.

Definition 2.32: Binormal vector
Lety : (a,b) — R3 be a unit speed curve with
k(t) 0, Vte(ab).

The binormal vector to y at y(¢) is
b(t) := y(t) x n(®).

Definition 2.33: Orthonormal basis
Let vy, vy, v3 be vectors in R3. We say that the triple

{Vl’ V2, V3}

is orthonormal if
Il =1, w-vj=0, fori=j.
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Proposition 2.34
Lety : (a,b) — R3 be a unit speed curve with
k() #0, Vte(ab).

Then the triple
B = (y(t),n(t),b(t))

is a positive orthonormal basis of R3 for all t € (a, b).

Proof

Since y is unit speed we have
ly@®l=1.

Moreover we have already observed that

In@®)l =1, y@® nl)=o0.

As b is defined by
b:=yxn,

by the properties of the vector product, see Proposition 2.14, it follows that
b-y=0, b-n=0.
By the calculation in Remark 2.15 Point 8, we have that
IbI* = [j1Inf? ~ Iy -nf* = 1.

This shows that the vectors
{y.n,b}

are orthonormal. By the properties of the vector product, see Remark 2.15 Point 6, we also know that

(Y> n, b)

is a positive basis of R>.

Proposition 2.35
Lety : (a,b) — R3 be a unit speed curve with k # 0. Then

b=yxn, n=bxy, y=nxb. (2.11)
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Proof

The first equality in (2.11) is true by definition of b. For the other 2 equalities, recall formula (2.8):
(uxv)xw=@-w)v—(v-wu, (2.12)

for all u, v, w € R®. Applying the above with

yields

Fxn)xy = y)n—(-py
= |yl n -0

=n,
where we used that y is a unit vector and n -y = 0. Therefore, by definition of b, we have
bxy=(xn)xy=n
showing the second equality in (2.11). For showing the third equality in (2.11), we apply (2.12) with
u=y, v=n, w=n,
to get

xn)xn=(F nn-(Mn-n)y
=0—|n|’y
=y

where we used that n is a unit vector and y - n = 0. Therefore, by definition of b and anti-commutativity
of the vector product, we have

nxb=-bxn=—(yxn)xn=y,

showing the last equality in (2.11).

Proposition 2.36
Lety : (a,b) — R3 be a unit speed curve with x # 0. Then

b(t) = —t(t)n(t), (2.13)

for some 7(t) € R.
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Proof
By definition of b and the formula of derivation of the cross product (2.9) we have
b= xn)
=yxXxn+yxn
= y X n y

where we used that
yxn=0,

since n is defined by n : =y /k, and therefore n and y are parallel. Hence, we have proven that
b=yxn. (2.14)

By the properties of the cross product we have that u x v is orthogonal to both u and v. Thus (2.14)
implies that '
b-y=0.
Further, observe that
%(b~b):13.b+b~15: 2b-b.

On the other hand, since b is a unit vector, we have
d d 2 d
—M-b)=—(b|")=—=(1)=0
S(b-b) = Z(bl") = £(1)

Therefore '
b-b=0.

To summarize, we have shown that b is orthogonal to b and y. Since

(y.n,b)

is an orthonormal basis of R* we conclude that b is parallel to n. Therefore there exists 7(t) € R such
that ‘
b = —z(t)n(t),

concluding the proof.
The scalar 7 in equation (2.13) is called the torsion of y.
Definition 2.37: Torsion of unit speed curve

Lety : (a,b) — R3 be a unit speed curve, with k # 0. The torsion of y at y(t) is the unique scalar

(t) €R
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such that
b(t) = —r()n(®).

Remark 2.38

In particular the torsion satisfies:

(t) = =b(?) - n(t).
The above can be immediately obtained by multiplying (2.13) by n. Indeed,
b=-tn = b-n=-m-n=-r1,

since n is a unit vector.

Warning

We defined the torsion only for space curvesy : (a,b) — R® which are unit speed and have non-vanishing
curvature, that is, such that

ly®l =1, @) =[p@®)] =0,
for all t € (a,b).

We can extend the definition of torsion to regular curves y with non-vanishing curvature. In this case the
torsion of y is defined as the torsion of a unit speed reparametrization of y.

Definition 2.39

Lety : (a,b) — R3 be a regular curve with non-vanishing curvature. Let y be a unit speed reparametriza-
tion of y, with )
Y=ve¢, ¢:(@ab)—(@ab).
We define the torsion of y at y(t) as )
(@) = (),

where 7Y (s) denotes the torsion of Y aty(s).

As usual, it is possible to check that the above definition of torsion does not depend on the choice of unit speed
reparametrization y. As with curvature, there is a general formula to compute the torsion without having to
reparametrize.

Proposition 2.40: Torsion formula

Lety : (a,b) — R® be a regular curve with non-vanishing curvature. The torsion (t) of y at y(¢) is given
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We delay the proof of the above proposition for a bit. In the meantime, let us look at examples.
Example 2.41: Torsion Helix

Consider the Helix of radius R > 0 and rise H > 0
y(@®) = (Rcos(?), Rsin(t), Ht), teR.

We have already shown that
R
y@)| = VR + H2, k= .
@l = T
Therefore the Helix is regular with non-vanishing curvature. The torsion can be then computed via the
formula

7 *x7)-¥
Iy <71

Let us compute the quantities appearing in the formula for 7

(t) =

y(@) = (—Rsin(t), Rcos(t), H)
¥(@) = (=R cos(t), —Rsin(t), 0)
¥() = (Rsin(t), —R cos(t), 0)

Moreover we had already computed that
¥ x¥ = (RH sin(t), —RH cos(t), R?)
ly x| = RVR? + H2 .

Finally we compute
G x7)-¥ = R*H.
We are ready to find the torsion:

vy H
yxyl° R+ H?

Example 2.42: Curvature and Torsion of Circle

The Circle of radius R > 0 is
y(@®) := (Rcos(t), Rsin(t),0).
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The curvature and torsion of the Helix of radius R and rise H > 0 are
R*+H%’ R*+ H?

For H = 0 the Helix coincides with the Circle y. Therefore we can set H = 0 in the above formulas to
obtain the curvature and torsion of the Circle

From the above example we notice that the torsion of the circle is 0. This is true in general for space curves
which are contained in a plane: we will prove this result in general. For the moment, let us give an example
for which this happens, that is, an example of space curve y which is contained in a plane.

Example 2.43

Define the space curve
Y@ : ( cos(t), 1 — sin(t), —% cos(t)) ,

for t € R. As seen in the plot below, y is just a Circle which has been rotated an translated. Therefore y
is contained in a plane, and we expect curvature and torsion to be

for some R > 0, radius of the Circle y. Let us proceed with the calculations:

. 4 . 3.
Y = <_§ sin(t), — cos(t), E sm(t))

so that
ly || — sm 2(t) + cos’(t) + — T sin®(t) = 1,

showing that y is regular and unit speed. Further
Y= (—% cos(t), sin(t), % cos(t)) .
Asy is unit speed, we have
k =yl = —5 COSZ(t) +sin’(t) + — o cosz(t) =1.

Asy is unit speed, the normal vector is

n= %Y = <—§ cos(t), sin(t), % cos(t)) .
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We can then compute the binormal
b=yxn
i j k
_4 sin(t) —cos(t) 3 sin(t)
- cos(t) sin(t) s cos(t)

3 2 3 .9 12 . 12 . 4 . o 4 2 )
——=co0s“(t) — —smn"(t), —— cos(t) sin(t) + — cos(t) sin(t), —— sin"(t) — — cos“(¢
(=2 cos?(t) = 2 sin’(0), 5 cos(®)sin(®) + 2 cos(®)sin(®), =% sin’(8) = = cos* (1)

(o)
5 5

Therefore

and we obtain that the torsion is

0.4
0.2
0.0
[ —0.2
[ —0.4

73.00
0d.23-5¢7
ok 0.0(9-25)'5&'751 0y

Figure 2.9: Plot of the curve in example above
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2.6 Frenet frame

For a unit speed curvey : (a,b) — R? with non-vanishing curvature we computed the triple

{y,n,b}.

We saw that the above is a positive orthonormal basis of R3. We also used this triple to compute curvature
and torsion 7 of y:
k=[yl., z=-b-n.

This triple is so important that it has a name.
Definition 2.44: Frenet frame
Lety : (a,b) — R3 be unit speed with k # 0. The positive orthonormal basis
. n, b}

is called Frenet frame of y.

We can also define the Frenet frame for regular curves with non-vanishing curvature.
Definition 2.45

Lety : (a,b) — R3 be regular with k # 0. The Frenet frame of y is defined as the Frenet frame of a unit
speed reparametrization y of y.

Remark 2.46

We should check that the above definition is well-posed:

« Note that y is unit speed. Moreover the curvature of kY is given by

K (1) = 1 ($(1))

for some ¢ diffeomorphism. Therefore ¥ % 0 as we are assuming k¥ # 0. Therefore the Frenet-
Frame of y is well defined.

« Ify is another unit speed reparametrization of y, then the Frenet frame generated by y coincides
with the one generated by y. The proof is left as an exercise.

From the Frenet frame we can define the Frenet-Serret equations.
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Theorem 2.47: Frenet-Serret equations

Lety : (a,b) — R3 be unit speed with k # 0. The Frenet-Serret equations are

Y =kn
n=—-xy+r7b
b=-mn
Proof
The first Frenet-Serret equation
Yy =kn (2.15)

holds by definition of n and . The third Frenet-Serret equation
b=—-rn (2.16)
holds by Proposition 2.36. Now, recall that in Proposition 2.35 we have proven
b=yxn, n=bxy, y=nxb. (2.17)
Differentiating the second equation in (2.17) and using (2.15)-(2.16) we get

n=bxy+bxjy
=(-tnxy)+bxkn
=7(y xn) —k(nxb)
=71b—xy,
where in the last equality we used the first and third equations in (2.17). The above is exactly the second
Frenet-Serret equation.

Remark 2.48
We can write the Frenet-Serret ODE sysyem in vectorial form. To this end, introduce the matrix

0
F:=| —«
0

\N O A

0
T
0

It is immediate to check that the Frenet-Serret equations are equivalent to

14 Y
n |=F| n
b b
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Important: Summary
Recall that:

1. Curvature k is defined only for regular curves.
2. Torsion 7 is defined only for regular curves with non-vanishing «.

The two strategies for computing x and 7 are discussed in the diagram in Figure 2.10 below.

~ unit speed?

Compute Frenet
frame {,n, b} Can you compute
Yes unit speed

(/’_ . .
() reparametrization?

5 = |1 [ No
T=-b-n Use formulas
Warning o — |y x4l
(o7lk
k only defined
for regular ~ __ (4 x %) -5
7 only defined for |y x4

regular v with Kk # 0

Figure 2.10: Summary for computing k and 7 for regular curve y.

Let us conclude the section with an example. We compute the Frenet frame of the helix. As a consequence

we obtain curvature and torsion.
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Example 2.49: Frenet frame of helix
Consider the helix of radius 1 and rise 1 given by
y(@) = (cos(t), sin(t),t),
for t € R. We now proceed following the diagram at Figure 2.10. We ask the first question:
Is y unit speed?

We have that
y(@) = (—sin(t), cos(t), 1),

and therefore

vl =+z.

This shows that y is regular but not unit speed. We ask the second question in the diagram:

Can we find a unit speed reparametrization of y?

Let us try. We compute the arc length of y starting at £y = 0

t
(1) := L )| du = 2t

The arc length is invertible with

=l = L
Y@ :=s0) "

Therefore a unit speed reparametrization of y is given by

~ L _ t . t t
YO =y = (COS <\/§) o (\/5) ’ \/5) '
The next step in the diagram is

Compute Frenet frame {y, n, b} and curvature , torsion 7

We compute

Therefore the curvature is

K0 = o] = 5.

Dr. Silvio Fanzon

S.Fanzon@hull.ac.uk



Differential Geometry Page 100

From the curvature we obtain the principal normal vector

=1z =|—cos L —sin L .
0= 50 = (~eon ()0 () )

We can now compute the binormal

b(t) =y xn
i j k
= 1 —sin(i) cos(%) 1

V2 —cos(ﬁ) —sin(%) 0

= L(sin(L) —cos (L) l)
We have therefore computed the Frenet frame of y. This is given by
5 1 . t t
t)=—|—sin|{—),cos|—],1
0= (-on(5) ()]
t . t
n(it)=|(—-cos{—|),—sin|—|,0
0= (-eos(5)-n(55) 9

1 t t
b(t) = — (sin (—) ,— COS (—) , 1) .
V2 V2 V2
See below for a picture of the Frenet frame of the helix. Given the Frenet frame, we can compute the
torsion via the formula

%

() =-b-n.

(l-=(5)9

Indeed, we have

N |~

and therefore

The torsion is then

The Frenet-Frame of the unit-speed Helix is plotted in Figure 2.11.
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y

Figure 2.11: Frenet frame of the helix of radius 1 and rise 1.

2.7 Consequences of Frenet-Serret

The most important consequence of the Frenet-Serret equations is that they allow to fully characterize space
curves in terms of curvature and torsion. Precisely, the following theorem holds.

Theorem 2.50: Characterization of space curves
Letx,7 : R — R be smooth functions, with k > 0. Then:
1. There exists aunit speed curvey : R — R® such that its curvature «¥ and torsion 7V satisfy
@) =x), @) =t@1), vteR.
2. Suppose thaty : R — R is a unit speed curve such that its curvature ¥ and torsion 7V satisfy
() =x(t), ) =1(t), vteR.

Then

up to rotations and translations.

The proof of Theorem 2.50 is omitted, and it can be found in Theorem 2.3.6 in [6].

Theorem 2.50 is a very strong result. It is saying two things:

1. If we prescribe curvature and torsion, then there exists a unit speed curve which has such curvature
and torsion.
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2. If two unit speed curves have same curvature and torsion, then they must be the same curve, up to
translations and rotations.

In other words, curvature and torsion fully characterize space curves. This result is the 3D counterpart of
Theorem 2.27, which said that signed curvature characterizes 2D curves.

Example 2.51

In Example 2.43 we have considered the unit speed curve

Y@ := (% cos(t), 1 — sin(t), —% cos(t)) ,
for t € [0, 27]. We have computed that
=1, =0.

If we plot y, we clearly see that y is just obtained by translating and rotating a unit circle, see plot below.
Theorem 2.50 enables us to rigorously prove this claim. Indeed, consider the unit speed circle

yY(@) := (cos(t), sin(t),0) ,

for t € [0,27]. In Example 2.42 we have proven that curvature and torsion are

Therefore
W =il =

and by Theorem 2.50 we conclude that y is equal to y up to rotations and translations.
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0.4
0.2
0.0
[ —0.2
[ —0.4

22.00
023567
'8.8 0.0(9'25)'5(975} Oy

Figure 2.12: Plot of the curve in example above

Another consequence of the Frenet-Serret equations is that they allow us to finally prove the curvature and
torsion formulas given in Proposition 2.19 and Proposition 2.40. For reader’s convenience we recall these two
results.

Proposition 2.52: Curvature and torsion formulas
Lety : (a,b) — R3 be a regular curve. The curvature x(t) of y at y(t) is given by

ly <7l

k() = =—
Iyl

Suppose in addition that y has non-vanishing curvature. The torsion z(t) of y at y(t) is given by

@GPy

(1) 2
ly > ¥l

Before proceeding with the proof, we need to establish some notation.
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Notation: Compact notation for arc length reparametrization

Supposey : (a,b) —» R" is regular and denote by
s: (ab) > @b), trs@)

its arc length. We already know that in this case s invertible, with inverse s7! giving a unit speed
reparametrizationy : (a,b) - R" of y, defined by

F=yey, y:=s"':(ab)— (ab)

Sometimes it is more convenient to adopt more compact notation. In the new notation the unit speed
reparametrization y is denoted by y(s):

t - y(@) ~ s y(s).

Thus, the reparametrization is denoted with the same symbol y, but this time y is considered as a function
of the arc length parameter

s€(ab).
We will denote:
« The derivative of s by
ds
dt
« The derivative of i/ = s™! by
dt
ds’

Moreover:

+ The derivative of y(t) is denoted by
dy
—@)=y@®), t ,b
T =10, te@h)
« The derivative of y(s) is denoted by
d .
L=y, se@b.
s

We also have new notations for the chain rule:
+ The chain rule for y is the old notations is:
y®O=y6®)) =y =y®))st), te(ab).

In the new notations the above chain rule is written
dy dy ds
—() = —(s(t)) —(¢ t b).
Lo =L o, re@h

We will often omit the dependence on the point ¢ by writing

dy _dy ar
ds dt ds’
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« The chain rule for the reparametrization y in the old notation is:

FO=y@®) = §O=yy®OY¥E), te@b).

In the new notations the above chain rule is written
( ) = —(l#( ))—(S) s€(ab),

since i/ is written dt/ds in the new notations. Without dependence on the point s, the above reads

dy _dy dt

ds dt ds’

Example 2.53: How to use the new notations
Let y and y be as above. We know that y is unit speed. Thus y(s) is unit speed with respect to s, that is,
¥l =1, V¥se@b). (2.18)

As an exercise, let us check that (2.18) holds, using the new notations. By chain rule we have

d
Ol = |26
oo o
=) £
Now, recall that
Bw =50 =l vie@b). (219)
According to the new notations and the inverse function theorem,
dt 1 1 -
—(s) = = — , Vse(ab),
PARAVER O
(WD)
where we used (2.19) evaluated at t = /(s). Thus
YOI = W) \%@)\
=y ——— Tl (1//( D
=1,

concluding (2.18).
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Let us highlight the main feature of the above notation.
Important: New Notation!

Lety : (a,b) > R" be a regular curve:

1. We denote by
tey@), te(ab)

the given curvey.

2. We denote by N
s—y(s), se(ab)

the arc length reparametrization of the curve y. The parameter s is the arc length parameter.
In particular y(s) is unit speed with respect to s.

We will heavily rely on the new notations for proving Proposition 2.52.
Proof: Proof of Proposition 2.52

We only prove the formula for «, as the one for 7 can be obtained similarly, just with more calculations.

For a proof see Proposition 2.3.1 in [6].
Since y is regular, we can reparametrize y by arc length s(t). We denote the arc lenght reparametrization

by y(s). We know that y(s) is unit speed, that is,

Therefore is well define the Frenet frame

d
{6 n6bO ) =16) = 21,

dy
ds

The Frenet-Serret equations are

t(s) = k(s)n(s)
n(s) = —k(s)t(s) + r(s)b(s)
b(s) = —z(s)n(s)
By chain rule
iy _dyds (i,
dt dsdt \dt
Differentiating the above we infer

2
= al(@)

d?s <ds) dt
= t+

Td \dt) dr
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By chain rule we have
dt _ dtdt

dt ~ dsds’
and therefore

dy 42
Y_dst+<ds> dt

a2 diz \dt) dt
d%s <d5>2 dt
=—t+(=) =.
dt® dt/ ds
Hence
oo dy dYy
y@) xy@) = I X e

(B[ e ()
- \dt dr? dt) ds
(ds) (dzs) 3
= —_ — |t x
dt /) \ di?

B (ds>3 dt
= | — tx—’
dt ds

since t x t = 0 by the properties of the cross product. Now we recall that

2 = k()n(s)
ds

by the first Frenet-Serret equation. Moreover
ds N
—() = t .
OBE0]

Therefore

3
O xi0 =(2) 2

= PO k(1) txn
= PO x(s(t) b,
where in the last line we used the definition of b
b(s) = y(s) xn(s) = t(s) x n(s).
We can now take the norms and obtain

@) x 7@ = Iy OF x(s®) bl
= ¥ @I (s(t)
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using that |b| = 1. Asy is regular, we can divide by |y(¢) 3 and obtain
g that | Y is reg y Iy

[OES (01}
7Ok

Recalling that the curvature of y at ¢ is defined as the curvature of y(s) at s(¢), we conclude that the above
is the desired formula.

k(s()) =

We now state and prove two more results which directly follow from the Frenet-Serret equations. They state,
respectivley:

1. A curve has torsion 7 = 0 if and only if it is contained in a plane.

2. A curve has constant curvature and zero torsion if and only if it is part of a circle.
Before proceeding, we recall the following.

Remark 2.54: Equation of a plane
The general equation of a plane 4 in R? is given by

m;={xeR®: x-P=d},

for some vector P € R? and scalar d € R. Note that:

« If d = 0, the condition
x-P=0

is saying that the plane 7, contains all the points x in R®> which are orthogonal to P. In particular
7 contains the origin 0.

« If d # 0, then &, is the translation of &, by the quantity d in direction P.

In both cases, P is the normal vector to the plane, as shown in Figure 2.13 below.

Proposition 2.55
Lety : (a,b) — R3 be regular and such that x # 0. They are equivalent:

1. The torsion of y satisfies 7(t) = 0 for all t € (a, b).

2. The image of y is contained in a plane, that is, there exists a vector P € R3 and a scalar d € R such
that

y@)-P=d, Vte(ab).
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Figure 2.13: The plane 7 is the set of points of R> orthogonal to P. The plane 7 is obtained by translating
7y by a quantity d in direction P.

Proof

Without loss of generality we can assume that y is unit speed. Indeed, if we were to consider y a unit
speed reparametrization of y, then

« y would still be contained in the same plane in which y is contained.
+ The torsion of y would not change, i.e., it would still be identically zero.

Thefore the Frenet frame of y exists. We denote it by
(). n(), b(®)} .

Step 1. Suppose that 7 = 0 for all . By the Frenet-Serret equations we have
b=—-(tn=0,

so that b(t) is constant. As by definition
b=y xn,

we conclude that the vectors y(¢) and n(¢) always span the same plane, which has constant normal vector
b. Intuition suggests that y should be contained in such plane, see Figure Figure 2.14 below. Indeed, recall
that the Frenet frame is orthonormal. Hence

y-b=0, Vte(ab).
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Then p
E(y-b):y-b+y-5:0, Vte(ab),

since b = 0. Thus Y - b is a constant scalar function, meaning that there exists costant d € R such that
y®)-b=d, vt e(ab).

The says that y is contained in a plane.
Step 2. Suppose that y is contained in a plane. Hence there exists P € R® and d € R such that

y®)-P=d, Vte(ab).
We can differentiate the above equation twice to obtain
y-P=0, y-P=0,
where we used that P and d are constant. By Frenet-Serret we have
7(t) = K(On().
Therefore the already proven relation y - P = 0 implies
k()n()-P=0.
As we are assuming k # 0, we deduce that
n(t)-P=0, Vte(ab).

We have shown that y(t) and n(t) are both orthogonal to P. Since b(t) is orthogonal to y(¢) and n(t), we
conclude that b(¢) is parallel to P. Hence, there exists A(t) € R such that

b(t) = A(t)PVt € (a,b). (2.20)

Since |b| = 1 and P is constant, from (2.20) we conclude that A(t) is constant. Differentiating (2.20) we
obtain
b(t) =0, Vte(ab).

By definition of torsion we thus have
t®)=-b-n(t) =0, Vte(ab).
Proposition 2.56

Lety : (a,b) — R3 be a unit speed curve. They are equivalent:

1. The image of y is contained in a circle of radius 1/c.
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U & contauned in
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Figure 2.14: If b is constant, then y lies in the plane spanned by y and n.

2. The curvature and torsion of y satisfy
kt)=c, (t)=0, Vte(ab),

for some constant ¢ € R.

Proposition 2.56 is actually a consequence of Theorem 2.50, and of the fact that we have computed that for a
circle of radius R one has

Therefore, by Theorem 2.50, every unit speed curve y with constant curvature and torsion must be equal to
a circle, up to rigid motions.

Nevertheless, we still give a proof of Proposition 2.56, to show yet another application of the Frenet-Serret
equations.

Proof

Step 1. Suppose the image of y is contained in a circle of radius 1/c. Then, up to a translation, y is
parametrized by

Y@ = (% cos(t), % sin(t), 0)
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for t in some interval (a, Z?) We have already seen that in this case

concluding the proof.
Step 2. Suppose that
kt)=c, (t)=0, Vte(ab),

for some constant ¢ € R. Since y is unit speed, its Frenet-Serret equations are:

Yy =xn=cn

n=-«xy+7tb=—cy
b=-m=0

In particular b = 0 and so b is a constant vector. As seen in the proof Proposition 2.55, this implies that
Y is contained in a plane & orthogonal to b, see Figure 2.14. As c is constant we get

d 1 o1 1
—<y+—n):y+—n:y——cy:O,
dt c c c

where we used the second Frenet-Serret equation. Therefore
1
Y@ +-n(@)=p, te(ab),
c
for some constant point p € R®. In particular

Iy(®) — pl = |-<n(o)| = <.

since n is a unit vector. The above shows that y is contained in a sphere of radius 1/c and center p. In
formulas:

y(@b)cS :={xeR®: |x—p|=1/c}.

The intersection of & with the plane 7 is a circle € with some radius R. Since

y((a.b)) cn, y((ab)cCS,

this implies
y((a, b)) cCxnd =6¢. (2,21)

Thus y parametrizes part of €. From Step 1 it follows that the curvature and torsion of y must satisfy

Since we already know that x = ¢, we conclude that R = 1/c. Therefore the circle € has radius 1/c and
the thesis follows by (2.21).
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3 Topology

So far we have worked in R", where for example we have the notions of open set, continuous function and
compact set. Topology is what allows us to extend these notions to arbitrary sets.

Definition 3.1: Topological space

Let X be a set and I a collection of subsets of X. We say that 5 is a topology on X if the following 3
properties hold:

e (A1) We have 9, X € 7,

« (A2) If {A;}i¢s is an arbitrary family of elements of 7, then

UA,-E?.

i€l

e« (A3)If A,B€ T then
AnBeJ .

Further, we say:
+ The pair (X, J) is a topological space.

+ The elements of X are called points.
« The sets in the topology I are called open sets.

Remark 3.2

The intersection property of 7, Property (A3) in Definition 3.1, is equivalent to the following:

« (A3)If Aq,..., Ay € T for some M € N, then

M
(A€ .
n=1

The equivalence between (A3) and (A3’) can be immediately obtained by induction.
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Warning

Notice:

+ The union property (A2) of I holds for an arbitrary number of sets, even uncountable!
+ The intersection property (A3’) of I holds only for a finite number of sets.

There are two main examples of topologies that one should always keep in mind. These are:

« Trivial topology: The topology with the smallest possible number of sets.
+ Discrete topology: The topology with the highest possible number of sets.

Definition 3.3: Trivial topology
Let X be a set. The trivial topology on X is the topology I defined by
I ={0,X}.

Let us check that  is indeed a topology. We need to verify the 3 properties of a topology:

+ (A1) We clearly have @, X € 7.
+ (A2) The only non-trivial union to check is the one between @ and X. We have

QuX=XeT.
+ (A3) The only non-trivial intersection to check is the one between @ and X. We have
DnX=QeT.

Therefore I is a topology on X.

Definition 3.4: Discrete topology

Let X be a set. The discrete topology on X is the topology I defined by
g ={A: ACX},

that is, every subset of X is open.

Let us check that  is a topology:

« (A1) We have @, X € 7, since @ and X are subsets of X.
+ (A2) The arbitrary union of subsets of X is still a subset of X. Therefore

UA,—GP/‘,

i€l

whenever A; € I forallie€ I
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+ (A3) The intersection of two subsets of X is still a subset of X. Therefore
AnBeT,

whenever A,Be 7.

Therefore I is a topology on X.

We anticipated that topology is the extension of familiar concepts of open set, continuity, etc. that we have in
R". Let us see how the usual definition of open set of R” can fit in our new abstract framework of topology.

Definition 3.5: Open set of R"
Let A C R". We say that the set A is open if it holds:

vxeA, 3r>0 st B(x)CA, (3.1)
where B,(x) is the ball of radius r > 0 centered at x

B/(x) :={y €R" : [y—x|<r},

and the Euclidean norm of x € R" is defined by

] =

See Figure 3.1 for a schematic picture of an open set.

Figure 3.1: The set A C R" is open if for every x € A there exists r > 0 such that B,(x) C A.
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Definition 3.6: Euclidean topology of R"
The Euclidean topology on R" is the topology  defined by

T :={A: ACR", A isopen}.

We need to check that the above definition is well-posed, in the sense that we have to prove that J is a
topology on R".

Proof: Well-posedness of Definition 3.6

Let us check that I is a topology on R"™:

« (A1) We have @, R" € 7 : Indeed @ is open because there is no point x for which (3.1) needs to be
checked. Moreover R" is open because (3.1) holds with any radius r > 0.

« (A2) Let A; € T foralli € I and define the union set

A= 4.

i€l

We need to check that A is open. Let x € A. By definition of union, there exists an index iy € I
such that x € A; . Since A; is open, by (3.1) there exists r > 0 such that B.(x) C A; . As A; C A,
we conclude that B,(x) C A. Thus Aisopenand A€ T .

« (A3) Let A,B € . We need to check that A n B is open. Let x € A n B. Therefore x € A and
x € B. Since A and B are open, by (3.1) there exist r,r, > 0 such that B, (x) C A and B, (x) C B.
Setr := min{ry,rp}. Then

B.(x)C B, (x) CA, B.(x)CB,(x)CB,
Hence B,(x) C A n B, showing that A n B open, sothat AnBe 7.
This proves that I is a topology on R".
Let us make a basic bus useful observation: balls in R" are open for the Euclidean topology.
Proposition 3.7
Let R" be equipped with I the Euclidean topology. Let r > 0 and x € R". Then

B.(x)e T .

Proof
We need to shown that B,(x) satisfies (3.1). Therefore, let y € B,(x). In particular
Ix -yl <r. (3-2)
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Define
e:=r—|x-vy|.

Note that ¢ > 0 by (3.2). We claim that
B.(y) € B(x), (3-3)

see Figure 3.2. Indeed, let z € B,(y). By triangle inequality we have
lz—x| <|x-yl+ly—zl<|x-yl+e=r,

where we used that |y — z| < ¢ and the definition of ¢. Hence z € B,(x), proving (3.3). This proves that
B,.(x) satisfies (3.1), and is therefore open.

Figure 3.2: The ball B.(y) is contained in B,(x) if ¢ :=r — |x — y].
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3.1 Closed sets

The opposite of open sets are closed sets.
Definition 3.8: Closed set
Let (X, J) be a topological space. A set C C X is closed if
CteT,

where C¢ := X \ C is the complement of C in X.

In words, a set is closed if its complement is open.
Warning

There are sets which are neither open nor closed. For example consider R equipped with Euclidean
topology. Then the interval
A :=10,1)

is neither open nor closed.

For the moment we do not have the tools to prove this. We will have them shortly.

We could have defined a topology starting from closed sets. We would have had to replace the properties (A1)-
(A2)-(A3) with suitable properties for closed sets. Such properties are detailed in the following proposition.

Proposition 3.9
Let (X, I) be a topological space. Properties (A1)-(A2)-(A3) of I are equivalent to (C1)-(C2)-(C3), where

« (C1) @, X are closed.
« (C2)If G is closed for all i € I, then

Na

i€l
is closed.
« (C3) If Cy, G, are closed then
Cl V] C2
is closed.
Proof

We have 3 points to check:
« The equivalence between (A1) and (C1) is clear, since

=X, X'=0.
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« Suppose C; are closed for all i € I. Therefore C are open for all i € I. By De Morgan’s laws we
have that c
i€l i€l
showing that
ﬂ G isclosed <« U Cf is open.
i€l i€l
Therefore (A2) and (C2) are equivalent.

« Suppose Cy,C, are closed. Therefore Cf, C5 are open. By De Morgan’s laws we have that
(C;uCy) =C§nCS

showing that
CiuGCyisclosed <«  CinCj isopen.

Therefore (A3) and (C3) are equivalent.

As a consequence of the above proposition, we can define a topology by declaring what the closed sets are.
We then need to verify that (C1)-(C2)-(C3) are satisfied by such topology. Let us make an example.

Example 3.10: The Zariski topology

Let (K, +,-) be a field. Define
X :=K" :={(a,....ay) : @ €K}.

Consider the set of polynomials with coefficients in the field
K[xi, ..., x,].
Therefore f € K[x, ..., x,]| has the form
FOxq s %) = Xy + oo+ Ay
where Ay, ..., A, are given elements of K. For I C K[x, ..., x;,] define

v() :={(ay,...,a,) € K" : f(ay,....ay) =0, ¥V f €I}
Define
€ :={V(I) : ICK[xq,...,x,]}.

Then € satisfies (C1), (C2) and (C3). This is an easy check, and is left as exercise. € is called the Zariski
Topology on the field K*. This is used in algebraic geometry to study Affine Varieties, an algebraic
version of surfaces, see Wikipedia page.
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3.2 Comparing topologies
Consider the situation where you have two topologies 77 and 7, on the same set X. We would like to have
some notions of comparison between 77 and 5.

Definition 3.11: Finer and coarser topology

Let X be a set and let 77, 7, be topologies on X. Suppose that

T, CT7.
We say that:
« I is finer than 7,.
« 9, is coarser than 7.
If it holds
Ty € T1,
we say that:

« 7 is strictly finer than 7,.
« 9, is strictly coarser than 7.

We say that 77 and 9, are the same topology if

Q%:Jz.

Example 3.12
Let X be a set and consider the trivial and discrete topologies
Twivial = {12, X}, Tdiscrete ={A 1 AC X}

Then
*c/:rivial C I, discrete »

so that T giscrete 18 strictly finer than Jiyivial-

Another interesting example is given by the cofinite topology on R. The sets in this topology are open if
they are either empty, or coincide with R with a finite number of points removed.

Example 3.13: Cofinite topology on R
Consider the following family T ognite Of subsets of R

T eofinite :={U C R : U°€ is finite, or U° = R}.
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Then (R, Tofinite) is a topological space, and J¢ofinite 1s called the cofinite topology. We have that

*%oﬁnite - LO/:zuclidean .

Exercise: Show that I nite 1S @ topology on R and that T.ognite © Teuclidean-

3.3 Convergence

We have generalized the notion of open set to arbitrary sets. Next we generalize the notion of convergence
of sequences.

Definition 3.14: Convergent sequence

Let (X,J) be a topological. Consider a sequence {x,;},c;y € X and a point x € X. We say that x,
converges to x if the following property holds:

vUeT st xpeU, IN=NU)eN s.t. x,€eU,Vn>N. (3.4)

Notation

The convergence of x;, to x; is denoted by

X, = Xy oOr nli_)riloxn:xo.

Let us analyze the definition of convergence in the topologies we have encountered so far. We will have
that:

« Trivial topology: Every sequence converges to every point.
+ Discrete topology: A sequence converges if and only if it is eventually constant.
» Euclidean topology: Topological convergence coincides with classical notion of convergence.

We now precisely state and prove the above claims.
Proposition 3.15: Convergence for trivial topology
Let (X, 9") be topological space, with I the trivial topology, that is,
I ={0,X}.
Let {x,} C X be a sequence and x, € X a point. Then

Xy = Xp -
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Proof

To show that x;, — x; we need to check that (3.4) holds. Therefore, let U € I with x, € U. We have two
cases:

« U = @: This case is not possible, since x; cannot be in U.

« U = X: Take N = 1. Since U is the whole space, then x;, € U for alln > 1.

As these are all the open sets, we conclude that x;, — x;.

Warning

This example is saying that in general the topological limit of a sequence is not unique!

Proposition 3.16: Convergence for discrete topology

Let (X, 9) be topological space, with 7 the discrete topology, that is,
T ={A: ACX}.

Let {x,} C X be a sequence and x; € X a point. They are equivalent:

L X; = Xp.
2. {x,} is eventually constant, that is, there exists N € IN such that

X, =x9, Vn>N.

Proof

Part 1. Assume that x,, — x.
We have to prove that {x,} is eventually constant. To this end, let

U= {XO} .
Then U € J. Since x,, = x, by (3.4) there exists N € IN such that
x, €U, Vn>N.

As U = {xg}, the above is saying that x,, = x; for all n > N. Hence x;, is eventually constant.
Part 2. Assume that x,, is eventually equal to x.
By assumption there exists N € IN such that

X, =%y, Vn>N. (3-5)
Let U € I be an open set such that x; € U. By (3.5) we have that
x, €U, Vn>N.

Since U was arbitrary, we conclude that x,, — x;.
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Before proceeding to examining convergence in the Euclidean topology, let us recall the classical definition
of convergence in R".

Definition 3.17: Classical convergence in R"

Let {x,} C R" and x, € R". We say that x,, converges X, in the classical sense if
lim |x, — x¢[ = 0.
n—oco

The above is equivalent to: For all ¢ > 0 there exists N € IN such that

Ix, —%o| <&, Vn>N.

Proposition 3.18: Convergence for Euclidean topology

Let R"” be equipped with 7 the Euclidean topology. Let {x,} C R" be a sequence and x, € R" a point.
They are equivalent:

1. X, — Xo with respect to 7.
2. X, — X, in the classical sense.

Proof

Part 1. Assume x,, — X with respect to I .
Fix ¢ > 0 and consider the set
U := BE(X()) .

By Proposition 3.7 we know that U € . Moreover x,, € U. By the convergence x,, — x, with respect to
I, there exists N € IN such that
x, €U, Vn>N.

As U = B,(xy), the above reads
Ix, —xo| <&, Vn>N,

showing that x,, — X in the classical sense.
Part 2. Assume x,, — X, in the classical sense.
Let U € I be such that x;, € U. By definition of Euclidean topology, this means that there exists r > 0
such that
B.(xq) CU.

As x,, — X in the classical sense, there exists N € IN such that
Ix, —xo| <r, Vn>N.

The above is equivalent to
x, € B(xq), Vn>N.
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Since B,(x() C U, we have proven that
x, €U, Vvn>N.

Since U is arbitrary, we conclude that x,, — x( with respect to 7.

Notation

Since classical convergence in R" agrees with topological convergence with respect to 7, we will just
say that x,, = x in R"” without ambiguity.

We conclude with a useful proposition which relates convergences when multiple topologies are present.
Proposition 3.19
Let X be a set and J7, 7, be topologies on X. Suppose that
T2 CT7.

Let {x,,} ¢ X and x; € X. We have

X, > XxX) in 93 = x,—x in I,.

Proof

Assume x, — x; in ;. We need to prove that x,, — x; in 5. Therefore, let U € I, be such that x; € U.
Since I, C J7, we have that U € ;. As x;, = x, in J7, there exists N € IN such that

x, €U, vn>N.

Since U € 9, the above proves x,, = x; in 7.

3.4 Metric spaces

We will now define a class of topological spaces known as metric spaces.
Definition 3.20: Distance

Let X be a set. A distance on X is a function
d: XxX—->R

such that, for all x, y, z € X they hold:
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+ (M) Positivity: The distance is non-negative
d(x,y)>0.

Moreover
dx,y)=0 < x=y.

+ (M2) Symmetry: The distance is symmetric
d(x,y) = d(y,x).
+ (M3) Triangle Inequality: It holds

d(x,z) <d(x,y)+d(y,z).

Definition 3.21: Metric space

Let X beasetand d : X x X — R be a distance on X. We say that the pair (X, d) is a metric space.

Example 3.22: R" as metric space

The Euclidean norm naturally induces a distance over R” by setting
d(x,y) :=|x—yl.

Then (R", d) is a metric space.

It is trivial to check that the Euclidean distance satisfies (M1) and (M2). To show (M3), recall-
ing the triangle inequality in R™:

Ix +yl < x| +yl.

for all x,y € R". Using the above we obtain

dx,y) =[x -yl
=|x-2)+(z-y)l
<|x—z|+ ]z -yl
=d(x,z) +d(z,y),

proving that d satisfies (M3). This prove that (R", d) is a metric space.
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Example 3.23: p-distance on R"

For x,y € R" and p € [1, o) define

n .
dp(x,y) := (Z|xi_yi|P) :
i=1

Note that d, coincides with the Euclidean distance. For p = oo we set
doo(X,y) 1= max |x; — y.
i=1...,n

We have that (R",d,) is a metric space.

Indeed properties (M1)-(M2) hold trivially. The triangle inequality is also trivially satisfied
by dw,. We are left with checking the triangle inequality for d,, with p > 1. To this end, define

1

Ixl, := (Z |xi|P)P |

i=1
Minkowski’s inequality, see Wikipedia page, states that
Ix+ylp <Ixlp +lyl,.
for all x,y € R". Therefore
dp(X, y) =[x - Y||p

=lx-2)+ -y,
<lx—zf, +lz -yl

= p(Xa z) + dp(z’ Y) ,

proving that d,, satisfies (M3). Hence (R",d,) is a metric space.

A metric d on a set X naturally induces a topology which is compatible with the metric.
Definition 3.24: Topology induced by the metric

Let (X,d) be a metric space. We define the topology 7, induced by the metric d as the collection of
sets U C X that satisfy the following property:

VvxeU,3areR,r>0 st. B(x)CU,
where B,(x) is the ball centered at x of radius r. This is defined by

B.(x) :={y € X : d(x,y) <r}.
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We need to check that the above definition is well-posed, that is, we need to show that 7 is actually a
topology on X. The proof follows, line by line, the proof that the Euclidean topology is indeed a topology,
see proof immediately below Definition 3.6. This is left as an exercise.

Example 3.25: Topology induced by Euclidean distance

Consider the metric space (R", d) with d the Euclidean distance. Then
Td = Teuclidean »

where Jeyclidean 1 the Euclidean topology on R".

Exercise: Prove the above statement. It is an immediate consequence of definitions.

Example 3.26: Discrete distance

Let X be a set. Define the functiond : X x X — R by

d(x.v) 0 ifx=y
xX,y) 1=
Y 1 ifx=+y

Then (X, d) is a metric space, and d is called the discrete distance. Moreover
% =9 discrete
where Jgiscrete 1S the discrete topology on X.

Exercise: Prove that (X, d) is a metric space and I3 = Jgiscrete-

The following proposition tells us that balls in a metric space X are open sets. Moreover balls are the building
blocks of all open sets in X. The proof is left as an exercise.

Proposition 3.27
Let (X, d) be a metric space and J; the topology induced by d. Then:

« Forall x € X, r > 0 we have B.(x) C 7.
« U € 9, if and only if

U=|B.().

i€l

with I family of indices and x; € X, r; > 0.

We now define the concept of equivalent metrics.
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Definition 3.28: Equivalent metrics

Let X be a set and d;, d, be metrics on X. We say that d; and d, are equivalent if

g, — g
Jd = Jd,-

The following proposition gives a sufficent condition for the equivalence of two metrics.
Proposition 3.29
Let X be a set and d;, d, be metrics on X. Suppose that there exists a constant & > 0 such that

La(xy) <di(ry) Sady(xy), VxyeX.
(24

Then d; and d, are equivalent metrics.

The proof of Proposition 3.29 is trivial, and is left as an exercise.
Example 3.30
Let p > 1. The metrics dp and d,, on R" are equivalent.
This follows from Proposition 3.29 and the estimate

doo(%,y) < dp(x, y) <ndo(x,y), Vx,yeR".

Warning

If two metrics are equivalent, that does not mean they have the same balls. For example the balls of the
metrics d;, dy and d, on R" look very different, see Figure 3.3.

Figure 3.3: Balls B,(0) for the metrics d,, dw, d; in R?.

We can characterize the convergence of sequences in metric spaces.
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Proposition 3.31: Convergence in metric space

Suppose (X, d) is a metric space and denote by 7 the topology induce by d. Let {x,;} C X and x, € X.
They are equivalent:

1. X, — Xy with respect to the topology 7.
2. d(x,;,xy) > 0inR.
3. For all € > 0 there exists N € IN such that

X, € B.(xy), vn>N.

The proof is similar to the one of Proposition 3.18, and it is left as an exercise.

3.5 Interior, closure and boundary

We now define interior, closure and boundary of a set A contained in a topological space.
Definition 3.32: Interior of a set

Let (X, 9) be a topological space and A C X a set. The interior of A is the set

IntA := U U.

UCA
UeT

Remark 3.33

The definition of Int A is well-posed, since @ C A and @ € J. Therefore the union is taken over a
non-empty family.

Proposition 3.34

Let (X, J) be a topological space and A C X a set. Then Int A is the largest open set contained in A, that
is:

1. Int A is open.

2. IntACA.

3. fVeT andV C A, thenV C Int A.
4. Ais open if and only if

A=IntA.
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Proof
We have:

1. Int A is open, since it is union of open sets, see property (Az2).
2. Int A C A, since Int A is union of sets contained in A.

3. Suppose V €  and V C A. Therefore

ve | ) U=mtA.

UCA
UeT

4. Suppose that A is open. Then
Ac | ) U=mtA.

UCA
UeT

As we already know that Int A C A, we conclude that A = Int A.
Conversely, suppose that A = Int A. Since Int A is open, then also A is open.
Definition 3.35: Closure of a set

Let (X, J) be a topological space and A C X a set. The closure of A is the set

A= ﬂ C,
ACC
C closed

that is, A is the intersection of all closed sets containing A.

Remark 3.36

The definition of A is well-posed, since A C X, and X is closed. Therefore the intersection is taken over
a non-empty family.

Proposition 3.37

Let (X, J) be a topological space and A C X a set. Then A is the smallest closed set containing A, that
is:

1. Ais closed.

2. ACA.

3. If Vis closed A C V, then ACV.
4. Ais closed if and only if
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Proof
We have:

1. A is closed, since it is intersection of closed sets, see property (Cz).

2. AC ;l, since A is intersection of sets which contain A.

3. Suppose V is closed and A C V. Therefore

A= () ccv.
ACC
C closed

4. Suppose that A is closed. Then
A= () cca,
ACC
Cclosed

showing that ACA. As we already know that A C ;1, we conclude that A = A.
Conversely, suppose that A = A. Since A is closed, then also A is closed.

Lemma 3.38

Let (X, ) be a topological space and A C X a set. They are equivalent:

1. Xy € Z
2. For every U €  such that x; € U, it holds

UnA+09Q.

Proof
We prove the contronominal statement:
€A < 3JUeT st. xpeU, UnA=0.
Let us check the two implications hold:
« Suppose xy ¢ A. Then x, € U := (A)°. Note that U is open, since U = A is closed. We have
AnU=An(AF =0,
since A C A.

« Assume there exists U € I such that x; € U and U n A = @. Therefore A C U°. Since U is open, U°
is closed. Then
A= [ ccue.
ACC
C closed
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Since x, ¢ U¢, we conclude that x, ¢ A.

Definition 3.39: Boundary of a set

Let (X, ) be a topological space and A C X a set. The boundary of A is the set

0A := A\IntA.

Proposition 3.40

Let (X, J) be a topological space and A C X a set. Then dA is closed.

Proof

We can write 3 3
0A=A\NIntA=An(ntA)F.

Note that A is closed and (Int A)° is closed, since Int A is open. Then 0A is intersection of two closed
sets, and in hence closed by (C2).

We can characterize A as the set of limit points of sequences in A.
Definition 3.41
Let (X, J) be a topological space and A C X. The set of limit points of A is defined as

L(A) :={xe X : 3{x,} C A st. x, > x}.

Proposition 3.42

Let (X, 9) be a topological space and A C X a set. Let {x,;} C A and xy € X be such that x;, - x;. Then
Xy € A. Therefore

L(A)C A.

Proof

Suppose by contradiction x, ¢ A, so that
X € (A)°.

Since (A)° is open and x,, — X, there exists N € N such that
x, € (A, vn>N.

This is a contradiction, since we were assuming that {x,} C A. This shows x; € A and therefore L(A) C A.
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Warning
The converse of Proposition 3.42 is false in general, that is,
A¢ L(A).

We show a counterexample of the above in Example 3.43. The above relation holds in the so-called first
countable topological spaces, such as metric spaces, see Proposition 3.44 below.

Example 3.43: Co-countable topology
Let X = R with the co-countable topology
T :={ACR: A°=R or A° countable}.

The set

A= (_003 O]
is not closed and A = R. Moreover, convergent sequences in (X, J) are eventually constant. Therefore
L(A) = A, showing that A ¢ L(A).

Exercise: Prove all the above statements.

In metric spaces we can characterize the interior of a set and the closure in the following way:.
Proposition 3.44
Let (X, d) be a metric space. Denote by 7 the topology induced by d. Let A C X. We have
IntA={x€eA: 3r>0 st B(x)C A} (3.6)

and B
A=LA) :={xe X st. 3{x,} C A st. x, > x}. (3.7)

Proof

The proof of (3.6) is left as an exercise. Let us prove (3.7). The inclusion L(A) C A holds by Proposition
3.42. We are left to show that 3
ACL(A).

To this end, let x, € A. For n € N, consider the ball B, /n(xp). Since By /,(xp) € T and x; € B,(xp), we can
apply Lemma 3.38 and deduce that
Bim(xp)n A+ Q.

Let x, € By /n(xp) n A. Since n was arbitrary, we have constructed a sequence {x,} C A such that

X € By/n(x), VneN.
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In particular, we have that
1
d(x,,x)) <= —>0
n

as n — oo. Thus x, — xy, showning that x, € L(A).

Example 3.45
Consider R with the Euclidean topology and A := [0, 1). We have that
IntA=(01), A=][01], aA={o0,1}.

In particular
IntA+A, A+A,

showing that A is neither open, nor closed.

The proof of the above statements is left as an exercise.

3.6 Density

Definition 3.46: Density
Let (X, J) be a topological space and A C X a set. We say that A is dense in X if

AnU=@, YUeT,U=Q.

Density can be characterized in terms of closure.
Proposition 3.47
Let (X, J) be a topological space and A C X a set. They are equivalent:

1. Ais densein X.
2. It holds

Proof

Part 1. Let A be dense in X. Suppose by contradiction that

A+X.
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This means (A)° # @. Note that (A) is open, being A closed. By density of A in X we have
An (A # 0.

Since A C A, the above is a contradiction.
Part 2. Suppose that A = X. Let U € J with U # @. By contradiction, assume that

AnU=09.
Therefore A C U°. As U°® is closed, we have
ACUS,

because A is the smallest closed set containing A. Recalling that A = X, we conclude that U¢ = X.
Therefore U = @, which is a contradiction.

Example 3.48
Consider R with the Euclidean topology.

1. We have that the set of integers Z is closed in R. Indeed,

7° = U(z,z+1).

z€Z

Since (z,z + 1) is open in R, by (A2) we conclude that Z° is open, so that Z is closed. Therefore
z=12,

showing that Z is not dense in R.

2. The rational numbers Q are instead dense in R, as proven in the Analysis module. Therefore

Q =R.
It is also easy to check that
ntQ=0.
Therefore 3
IntQ+0Q, Q=+0Q,

showing that Q is neither open, nor closed.
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Example 3.49
Consider R with the cofinite topology
T cofinite :=1U CR : UC is finite, or U = R}.

We have that
Z =R,

showing that Z is dense in R.

Proof. Suppose C is a closed set such that Z C C. By definition of gnite We have C = R or
C finite. Since Z C C and Z is not finite, we conclude C = R. This proves that R is the only
closed set containing Z, and so Z = R.

3.7 Hausdorff spaces

Hausdorff space are topological spaces in which points can be separated by means of disjoint open sets.
Definition 3.50

Let (X, ) be a topological space. We say that X is a Hausdorff space if for every two points x,y € X
with x # y there exist U,V € J such that

xeU, yeV, UnV=0.

The main example of Hausdorff spaces are metrizable spaces.

Proposition 3.51

Let (X, d) be a metric space with J; the topology induced by d. Then (X, ;) is a Hausdorff space.

Proof

Let x,y € X with x # y. Set
£ 1= %d(x,y),

and define
U :=BJx), V :=BJ(y).

By Proposition 3.27 we know that U,V € J;. Moreover x € U, y € V. We are left to show that
UnV =0.
Suppose by contradiction that U nV # @ and let z € U n V. Therefore
dix,z)<e, d(y,z)<e.
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By triangle inequality we have
dix,y) <d(x,z) +d(y,z) <e+e=d(x,y),

where in the last inequality we used the definition of . This is a contradiction. Therefore UnV = @ and
(X, ;) is Hausdorft.

In general, every metrizable space is Hausdorff.
Definition 3.52: Metrizable space

Let (X, J) be a topological space. We say that the topology J is metrizable if there exists a metric d on
X such that
I =9y,

with J; the topology induced by d.

Corollary 3.53

Let (X, J) be a metrizable space. Then X is Hausforff.

Proof
Since (X, 9) is metrizable, there exists a metric d on X such that
I =9y.
By Proposition 3.51 we know that (X, ;) is Hausdorff. Hence (X, ) is Hausdorff.

As a conseugence of Corollary 3.53 we have that spaces which are not metrizable are not Hausdorff. Let us
make a few examples.

Example 3.54: Trivial topology is not Hausdorft

Let (X, J) be a topological space with I trivial topology. Assume that X has more than one element.
Then X is not Hausdorff.

Indeed, let x, y € X with x # y. Suppose by contradiction that X is Hausdorff. Then there
exist U,V € T such that
xeU, yeV, UnV=0.

Recall that
I ={o, X}.

Since x € U and y € V, we deduce that U and V are non-empty. Since U and V are open, the
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only possibility is that
U=V=X.

In this case we have
UnV=XnX=X=0Q0,

leading to a contradiciton. Hence X is not Hausdorft.

Example 3.55: Cofinite topology on R
Consider the following family 9 of subsets of R
T :={U CR : U° is finite, or U° = R}.

Then (R, ) is a topological space which is not Hausdorff. The topology I is called the cofinite topol-
ogy.

Exercise: Show that (R, ) is not Hausdorft.

Example 3.56
Consider the following family I of subsets of R

T :={U=(-,a) : —oc0<a< oo},
Then (R, 7) is a topological space which is not Hausdorff.

We start by showing that (R, J) is a topological space. We need to check the properties of
topologies:

+ (A1) We have that
(0,0) =0 €T, (—0,0)=ReT.
+ (A2) Suppose that A; € I for all i € I. By definition

Ai:(_oo’ai): _oogaigoo'

Set

a:=sup g, A:=(—x,a).
i€l

Note that a always exists, and possibly a = co. Moreover A € . We claim

A=A, (3.8)

i€l
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To prove (3.8) first suppose that x € A. Then x < a. Set ¢ := a — x, so that ¢ > 0. By
definition of supremum there exists iy € I such that

a—e<a.
From the above, and from the definition of ¢, we deduce
g, >a—e=a—-a+tx=x,
showing that x € (—o,q; ) = A; . Therefore
Acl A
i€l
Conversely, assume that x € uje; A;. Therefore there exists iy € I such that x € A; =

(—c0,a; ). In particular

x<a,<supag =a,
i€l

showing that x € (—co0,a) = A. Therefore

JAca,

iel
and (3.8) is proven.
« (A3) Let A,B € . Therefore
A=(-o,a), B=(-0,b),
for some a,b € [—o0, ]. Set
U:=AnB, z:=min{a,b}.

It is immediate to check that
U = (—oo, z) ,

showing thatU € 7.

Therefore (R, 7) is a topological space. We now show that (R, 9) is not Hausdorff. Suppose
by contradiction that (R, ) is Hausdorff. Let x,y € R with x # y. By assumption there
exist U,V € I such that

xeU, yeV, UnV=0.

By definition of I there exist a, b € [—o0, 00] such that
U= (—,a), V =(-—o0,b).
Since x € U and y € V, in particular U and V are non-empty. Therefore a,b > —oo. Set
z :=min{a,b}, Z :=UnV =(-c0,2).

As a,b > —oo, we have z > —oo. Therefore Z # @. This is a contradiction, sinceU nV = @.
Therefore (R, ) is not Hausdorft.
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In Hausdorff spaces the limit of a sequence is unique.
Proposition 3.57: Uniqueness of limit in Hausdorff spaces

Let (X, 9) be a Hausdorff space. If a sequence {x,} C X converges, then the limit is unique.

Proof

Let {x,} C X be a convergent sequence. Suppose by contradiction that
Xn = X0,  Xn ™o
in X, for some xg, yp € X with x, # y,. Since X is Hausdorft, there exist U,V € I such that
X €U, yeV, UnV=0.
As x, & xg and U € I with x; € U, there exists N; € N such that
x, €U, VvVn>Nj.
Similarly, since x;, = yp and V € I with y, € U, there exists N, € IN such that
x, €V, ¥n>N,.

Take N := max{N;, N,}. Then
x €UnV, Vn>N.

Since U nV = @, the above is a contradiction. Therefore the limit of x;, is unique.

3.8 Continuity

We extend the notion of continuity to topological spaces. To this end, we need the concept of pre-image of a
set under a function.

Definition 3.58: Images and Pre-images
Let X,Y be setsand f : X — Y be a function.
« Let U C X. The image of U under f is the subset of Y defined by
fU) :={yeY: IxeX st. y=f(x)}={f(x) : xeX}.
« Let V CY. The pre-image of V under f is the subset of X defined by

V) :i={xeX: f(x)eV}.
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Warning

The notation f~!(V) does not mean that we are inverting f. In fact, the pre-image is defined for all
functions.

Let us gather useful properties of images and pre-images.
Proposition 3.59

Let X,Y be sets and f : X — Y. We denote with the letter A sets in X and with the letter B setsin Y. We
have

- AC fTH(f(A)

« A= f Y(f(A))if f is injective

- f(f7X(B) C B

f(f~Y(B)) = Bif f is surjective

If Ay C A, then f(A;) C f(Ay)

« If B; C B, then f~1(B)) € f7'(By)
If A; C X fori € I we have

f (U Ai) = fa

i€l i€l
f (ﬂ Ai) <) f(4)
i€l i€l

If B; CY fori €I we have

1 (U Bi) =J '@

i€l i€l
1 (ﬂ B,~> = f'®)
i€l i€l

Suppose Z is another setand g: Y — Z. Let C C Z. Then

(g° HA) = g(f(A)
(g NHO) =g ©O)

It is a good exercise to try and prove a few of the above properties. We omit the proof. We can now define
continuous functions between topological spaces.
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Definition 3.60: Continuous function

Let (X, Ix) and (Y, Jy) be topological spaces. Let f : X — Y be a function.

« Let xy € X. We say that f is continuous at x; if it holds:

VVeTy st f(xg)eV,3UeTx st. xoeU, fUCV.

« We say that f is continuous from (X, 7x) to (Y, Iy) if f is continuous at each point x; € X.

The following proposition presents a useful characterization of continuous functions in terms of pre-
images.

Proposition 3.61
Let (X, Ix) and (Y, Iy) be topological spaces. Let f : X — Y be a function. They are equivalent:

1. f is continuous from (X, Tx) to (Y, Ty).
2. It holds:
f_l(V)ng, VVegy.

Important

In other words, a function f: X — Y is continuous if and only if the pre-image of open sets in Y are
open sets in X.

The proof of Proposition 3.61 is simple, but very tedious. We choose to skip it.
Example 3.62

Let X be a set and I, 7, be topologies on X. Define the identity map
ldy: (X,91) > (X,73), ldx(x) :=x.
They are equivalent:

1. Idy is continuous from (X, 97) to (X, 75).
2. 7 is finer than 7,
I, CT7.

Indeed, Idy is continuous if and only if
' (V)eT;, vVeT,.
But Id)_(l (V) =V, so that the above reads
Veg, vVed,,

which is equivalent to 7, C 7.
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Let us compare our new definition of contiuity with the classical notion of continuity in R". Let us recall the
definition of continuous function in R".

Definition 3.63: Continuity in the classical sense
Let f: CR" — R™ We say that f is continuous at xq if it holds:

Ve>0,35>0 st [f(x)— f(xg)] <e if |x—xp] <3.

Proposition 3.64

Let f: R" —» R™ and suppose R", R" are equipped with the Euclidean topology. Let x, € R". They are
equivalent:

1. f is continuous at x;, in the topological sense.
2. f is continuous at X, in the classical sense.

Proof

Part 1. Suppose that f is continuous at x, in the topological sense. Let ¢ > 0 and consider the set

V= B(f(x0)).

We have that V. C R™ is open and f(xy) € V. As f is continuous in the topological sense, there exists
U C R" open with x, € U and such that

fU) cV = B.(f(x0))- (3.9)
Since U is open and x; € U, there exists § > 0 such that
B5(X0) C U .

By the above inclusion and (3.9) we conclude that

f(Bs(x0)) € f(U) €V = B(f(x0)).-
This is equivalent to
x€Bs(xg) = f(x)€B(f(x0)),

which reads
Ix-x0l <6 = |fx)-flxpl<e.

Therefore f is continuous at x,, in the classical sense.
Part 2. Suppose f is continuous at x; in the classical sense. Let V C R™ be open and such that f(x,) € V.
Since V is open, there exists ¢ > 0 such that

B.(f(x¢)) C V. (3.10)
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Since f is continous in the classical sense, there exists § > 0 such that

lx—xol <6 = &) - fxo)l <e.

The above is equivalent to
x € Bs(xg) = f(x) € B(f(x0)). (3-12)

Set
U := Bs(xo)

and note that U is open in R"” and x, € U. By definition of image of a set, (3.11) reads
fU) = f(Bs(x0)) < B(f(x0))-

Recalling (3.10) we conclude that
fU)cv.

In summary, we have shown that given V. C R™ open and such that f(x,) € V, there exists U open in R"
such that x, € U and f(U) C V. Therefore f is continuous at x, in the topological sense.

A similar proof yields the characterization of continuity in metric spaces. The proof is left as an exercise.
Proposition 3.65

Let (X,dx) and (Y, dy) be metric spaces. Denote by Ty and Jy the topologies induced by the metrics.
Let f: X — Y and x; € X. They are equivalent:

1. f is continuous at x, in the topological sense.

2. It holds:
Ve>0,38 >0 st dy(f(x), f(xg)) <e if dy(x,x)<9.

Let us examine continuity in the cases of the trivial and discrete topologies.
Example 3.66
Let (X, Ix) and (Y, Iy) be a topological space. Suppose that Jy is the trivial topology, that is,
Iy ={0,Y}.
Then every function f : X — Y is continuous.
Indeed, we know that f is continuous if and only if it holds:
iV egx, vVeTy.

We have two cases:
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« V= @: Then
W= @=0e9x.

+ V =Y: Then
=1 =Xegx.

Therefore f is continuous.

Example 3.67

Let (X, Ix) and (Y, Jy) be topological spaces. Suppose that Jy is the discrete topology, that is,
Iy ={V st. VCY}.

Let f : X — Y. They are equivalent:

1. f is continuous from X to Y.
2. f{yH) e Ix forallyey.

Indeed, suppose that f is continuous. Then
f_l(V)ng, VVEgy.

AsV = {y} € Fy, we conclude that f~}({y}) € Ix.
Conversely, assume that f~1({y}) € I forall y € Y. Let V € Jy. Trivially, we have

V=]

yev

Therefore

vy = f1 (U {y}) =J Fdw.

yeV yev

As f1({y}) € I for all y € Y, by property (Az) we conclude that f~1(V) € Tx. Therefore
f is continuous.

In a topological space, continuity preserves limits of sequences.
Proposition 3.68

Let (X, Ix) and (Y, Jy) be topological spaces. Let f: X — Y be continuous. Let {x,} C X and x, € X.
We have
X2 x in X = f(x)— f(xp) inY.
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Proof
Let V € Jy be such that f(x,) € V. Since f is continuous there exists U € Ty with x, € U such that
fu)cv.
Since U € Iy and x;, = xp in X, there exists N € IN such that
x, €U, vn>N.

Therefore
fGe) € fU), ¥n=N.

Seeing that f(U) C V, we conclude
f(x,)eV, vn>N,

showing that f(x,) = f(x)inY.

Warning

The converse implication of Proposition 3.68 is false. That is, even if it holds
X~ x in X = f(x)— flx) inY.

for all sequences {x,} C X, the function f might not be continuous. A counterexample is given in
Example 3.70 below.

For the above to hold, it is necessary for the topologies on X and Y to be first countable, as for example
is the case for metrizable topologies, see Proposition 3.69 below.

Proposition 3.69

Let (X,dx) and (Y, dy) be metric spaces. Let f : X — Y and suppose that for all convergent sequences
{x,} C X, the sequence { f(x;,)} is convergent in Y. Then f is continuous.

Proof

Suppose by contradiction f is not continuous at some point x, € X. Then there exists ¢y > 0 such that,
for all § > 0 it holds

dy(f(x), f(x0)) > &, dx(x,x%) <.
We can therefore choose 6 = 1/n and construct a sequence {x,} C X such that
1
dy(f(x0), f(x0)) > &0, dx (o, %) < . vnelN.
Therefore x, — x; in X. Define the sequence

x, if n even

Yo i xp if n odd
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As x, = xp, we have y, — x;. However {f(y,)} does not converge to any point in Y: Indeed {f(y,)}
cannot converge to f(xg), since for n even we have

dy (f (s f(x0)) = dy (f () f(x0)) > £ -

Also {f(y,)} cannot converge to a point y # f(xg), since for n odd

dy(f(yn),y) = dy(f(x0),y) > 0.

Hence, we have produced a sequence {y,} which is convergent, but such that { f(y,)} does not converge.
This contradicts our assumption. Hence f must be continuous.

Example 3.70
Consider R with the co-countable topology:

Tee :={ACR: A°=R or A® countable}.

Sequences in (R, 7..) converge if and only if they are eventually constant. Also consider the discrete

topology on R, denoted by T yiscrete- We have seen that sequences in (R, T giserete) converge if and only if
they are eventually constant. Consider the identity function

f : (]R’ ‘%C) - (]R» gdiscrete) > f(x) =X,

We have that:
« f is not continuous: Indeed {x} € Jjjscrete DUt
) = {x} ¢ T
since {x}¢ is neither R, nor countable.

o If {x,} is convergent in I, then it is eventually constant. Therefore { f(x;)} is eventually constant,
and so it is convergent in Jgiscrete-

Let us make an observation on continuity of compositions.
Proposition 3.71
Let (X, Ix), (Y, 9y),(Z, T ) be topological spaces. Let
f: X->Y, g:Y>Z,
be given functions. If f and g are continuous, then

(g f): X=2Z
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is continuous.

Proof
Let C € 9. As g is continuous, we have that
g0 eTy.

Since f is continuous, we also have
g o) egx.
Therefore
(g° H7HO) = fH (g7 (O) e Ix,

so that g o f is continuous.
We conclude the section by introducing homeomorphisms.
Definition 3.72: Homeomoprhim

Let (X, Ix), (Y, Iy) be topological space. A function f: X — Y is called an homeomorphism if they
hold:

1. f is continuous.
2. There exists g : Y — X continuous such that

gef=1dx, fog=1Idy.

The above is saying that f is a homeomorphism if it is continuous and has continuous inverse. Homeomor-
phisms are the way we say that two topological spaces look the same.

3.9 Subspace topology

Any subset Y in a topological space X inherits naturally a topological structure. Such structure is called
subspace topology.

Definition 3.73: Subspace topology
Let (X, J") be a topological space and Y C X a subset. Define the family of sets

§ :={ACY:3Ue€T st. A=UnY}.

The family & is called subspace topology on Y induced by the inclusion Y C X.
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Proof: Well-posedness of Definition 3.73

We have to show that (Y, &) is a topological space:

(A1) @ € § since
Q=90nY

and @ € 7. Similarly we have Y € &, since
Y=XnY,

and X € 7.

« (A2) Let A; € 8 fori € I. By definition there exist U; € I such that

A=UnY, Viel.

Therefore

UAi:U(UinY):<UUi>nY.

i€l i€l i€l

The above proves that u;c; A; € &, since uje U € T

« (A3) Let A;, Ay € §. By definition there exist U;,U, € I such that

AlelﬂY, AzzUzﬂY

Therefore

AlnAz:(UlﬂY)ﬂ(UzﬂY):(UlﬂUz)ﬂY

The above proves that A; n Ay € &, sinceU; nU, € T

If the set Y is open, then sets are open in the subspace topology if and only if they are open in X.

Proposition 3.74
Let (X, J) be a topological space and Y € I a subset. Let A C Y. Then

AedS — AeT.

Proof

Suppose A € &. Then there exists U € I such that
A=UnY.
Since U,Y € T, by property (A3) of topologies it follows that

A=UnYeT.
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Conversely, assume that A € 7. Then
A=AnY,

showing that A € §.

Warning

Let (X, 9) be a topological space, A CY C X. In general we could have
AeS§ and A¢T

For example consider X = R with I the euclidean topology. Consider the subset Y = [0, 2)
and equip Y with the subspace topology §'. Let A =[0,1). Then A ¢  but A € &, since

A=(-1,1)nY

and (-1,1) € J.

Example 3.75

Let X = R be equipped with I the euclidean topology. Let & be the subspace topology on Z. Then &
coincides with the discrete topology.

Proof. The set {z} is open in & for all z € Z. Indeed,
{Z}=E-1,z+1)nZ

and (z—1,z+1) € J. Thus{z} € §. Let now A C Z. Then

A=,

z€EA

and therefore A € & by (A2). This proves that
§={Ast. ACZ},

that is, & is the discrete topology on Z.

3.10 Topological basis

We have seen that in metric spaces every open set is union of open balls, see Propostion 3.27. We can then
regard the open balls as building blocks for the whole topology. In this context, we call the open balls a basis
for the topology.
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We can generalize the concept of basis to arbitrary topological spaces.
Definition 3.76: Topological basis

Let (X, J) be a topological space and let B C I . We say that % is a topological basis for the topology
I ifforallU € T there exist open sets {B;} C 93, with I family of indices, such that

U= U B;. (3.12)

i€l

Example 3.77

1. Let (X, J) be a topological space. Then &% := 7 is a basis for 7.
This is true because one can just take B = U in (3.12).

2. (X, d) metric space with topology J; induced by the metric. Then

B :={B(x): x€X, r>0}

is a basis for 7.
This is true by Propostion 3.27.

3. Let (X, ) with X the discrete topology. Then

B ={x}: xe X}

is a basis for 7.

This is true because for any U € I we have

U=

xeU

Proposition 3.78
Let (X, 9) be a topological space and 9 a basis for 7. They hold:

+ (B1) We have

) B=x.

Be3&

« (B2) If U,U, € & then there exist {B;} C % such that

UanZZUBi'
i€l
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Proof

« (B1) This holds because X € 9. Therefore by definition of basis there exist B; € % such that

x={JB.

i€l
Therefore taking the union over all B € % yields X, and (B1) follows.

« (B2) Let U;,U, € B. Then U;,U, € T, since B C T . By property (A3) we get thatU; nU, € T
Since % is a basis we conclude (B2).

Properties (B1) and (B2) from Proposition 3.78 are sufficient for generating a topology.
Proposition 3.79

Let X be a set and 9 a collection of subsets of X such that (B1)-(B2) hold. Define

g :=JucXx: U=|JB. B e%®B{.
i€l

Then:

1. T is atopology on X.

2. A is a basis for 7.

Proof
1. We need to verify that I is a topology:

+ (A1) We have that X € I by (B1). Moreover @ € J, since @ can be obtained as empty union.
Therefore (A1) holds.

« (A2)LetU; € I for alli € I. By definition of 7 we have

U= B

kek;

for some family of indices K; and B;-< € 9. Therefore
v:=Ju= (J B,
i€l i€l, kek;

showing that U € 7.

« (A3) Suppose that U;,U, € . Then

u=\JB'. U=[J)B
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for B!, B? € &. From the above we have

Unlp= ) B'nB.
i€l;, kel,

From property (B2) we have that for each pair of indices (i, k) the set B} n Bi is the union of sets in
3AB. Therefore U; n U, is union of sets in %, showing that Uy nU, € T .

2. This trivially follows from defintion of 7 and definition of basis.

3.11 Product topology

Given two topological spaces (X, 7x) and (Y, Jy) we would like to equip the cartesian product
XxY={(x,y): xeX, yeY}

with a topology. We proceed as follows.
Proposition 3.80
Let (X, Ix) and (Y, Iy) be topological spaces. Define the family 9 of subsets of X x Y as
B :={UxV:UeTx, VeITy}Cc XxY.

Then & satisfies properties (B1) and (B2) from Proposition 3.78.

The proof is an easy check, and is left as an exercise. As & satisfies (B1)-(B2), by Proposition 3.79 we know
that

Txxy 1 =UXV : UxV:UBi,,BiEQ (3.13)
i€l
is a topology on X x Y.
Definition 3.81: Product topology

Let (X, Ix) and (Y, Iy) be topological spaces. We call T,y at (3.13) the product topology on X xY.

Example 3.82

Let R be equipped with the Euclidean topology. The product topology on RxR coincides with the topology
on R? equipped with the Euclidean topology.

Consider the projection maps
mx: XxY > X, nx(x,y):=x
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and
ay: XxY —>Y, ay(x,y) =y

Proposition 3.83

Let (X, Ix) and (Y, Iy) be topological spaces and equip X x Y with the product topology Jx.y. Then
mx and my are continuous.

Proof

Let U € Ix. Then
A (U)=UxY.
We have that U xY € T,y since U € Ty and Y € Jy. Therefore ry is continuous. The proof that 7y is

continuous is similar, and is left as an exercise.

The following proposition gives a useful criterion to check whether a map into X x Y is continuous.
Proposition 3.84

Let (X, Jx) and (Y, Jy) be topological spaces and equip X x Y with the product topology Jxy. Let
(Z,T ) be a topological space and
f:Z—->XxY

a function. They are equivalent:

1. f is continuous.
2. The compositions
nxef:Z—->X, mayef:Z->Y

are continuous.

The proof is left as an exercise.

3.12 Connectedness

Suppose that (X, 7) is a topological space. By property (A1) we have that
0, XeT

Therefore
=X, X=0

are closed. It follows that @ and X are both open and closed.
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Definition 3.85: Connected space

Let (X, J) be a topological space. We say that:

+ X is connected if the only subsets of X which are both open and closed are @ and X.
+ X is disconnected if it is not connected.

The following proposition gives two extremely useful equivalent definitions of connectedness. Before stating
it, we define the concept of proper set.

Definition 3.86: Proper subset
Let X be a set. A subset A C X is proper if

A0, A=X.

Proposition 3.87: Equivalent definition for connectedness

Let (X, J) be a topological space. They are equivalent:

1. X is disconnected.
2. X is the disjoint union of two proper open subsets.
3. X is the disjoint union of two proper closed subsets.

Proof

Part 1. Point 1 implies Points 2 and 3.
Suppose X is disconnected. Then there exists U € X which is open, closed, and such that

U0, U=X. (3.14)

Define
A:=U, B:=U°.

By definition of complement we have
X=AuB, AnB=0.
Moreover:
« A and B are both open and closed, since U is both open and closed.
« A and B are proper, since (3.14) holds.

Therefore we conclude Points 2, 3.
Part 2. Point 2z implies Point 1. Suppose A, B are open, proper, and such that

X=AuB, AnB=0.
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This implies
A= X\ A=B,

showing that A° is open, and hence A is closed. Therefore A is proper, open and closed, showing that X
is disconnected.
Part 3. Point 3 implies Point 1. Suppose A, B are closed, proper, and such that

X=AuB, AnB=9.

This implies
A°=X\A=B,

showing that A° is closed, and hence A is open. Therefore A is proper, open and closed, showing that X
is disconnected.

In the following we will use Point 2 and Point 3 in Proposition 3.87 as equivalent definitions of disconnected
topological space.

Example 3.88

Consider the set X = {0, 1} with the subspace topology induced by the inclusion X C R, where R is
equipped with the Euclidean topology J.yclidean- Then X is disconnected.

Proof. Note that
X ={0}u{1}, {0}n{1}=0.

The set {0} is open for the subspace topology, since
{03=Xn(-1,1), (-1,1) € Teuclidean -
Similarly, also {1} is open for the subspace topology, since
{1} =Xn(0,2), (0,2) € Teuclidean -

Clearly
{00, {1}=0,

showing that X is disconnected.

Example 3.89
Let p € R. The set X = R\ {p} is disconnected.

Proof. Define the sets
A:(—oo’p), B=(p,0°).
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Then A, B are proper subsets of X, since p ¢ X. Moreover
X=AuB, AnB=09.

Finally we have that A, B are open for the subspace topology, since they are open in R. There-
fore X is disconnected.

Example 3.90
Letn > 2 and A C R" be open and connected. Let p € A. Then X = A\ {p} is connected.

Exercise: Prove that X is connected.

The next theorem shows that connectedness is preserved by continuous maps.
Theorem 3.91

Let (X, Ix), (Y, Iy) be topological spaces. Suppose that f : X — Y is continuous and let f(X) C Y be
equipped with the subspace topology. If X is connected, then f(X) is connected.

Proof
Suppose that A, B are open in f(X) and such that
f(X)=AuB, AnB=0.

if we show that

A=@ or B=9 (3.15)
the proof is concluded. Since A, B are open for the subspace topology, there exist A, B € Iy such that
A=Anf(X), B=Bn f(X). (3.16)
Since f(X) = Au B we have
X = fY(AuB)

= A B
= @B
where in the last equality we used (3.16). Since A n B = @, we also have that
@7 B = 1D B
= f'(AnB)

= f )
=Q
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where in the first equality we used (3.16). By continuity of f we have that
A, (B eTx.
Therefore, using that X is connected, we deduce that
YA =0 or fTI(B)=0.

The above implies _ _
Anf(X)=9 or Bn f(X)=0.

Recalling (3.16), we obtain (3.15), ending the proof.

An immediate corollary of Theorem 3.91 is that connectedness is a topological invariant, e.g., connectedness
is preserved by homeomorphisms.

Corollary 3.92
Let (X, I), (Y, 9y) be homeomorhic topological spaces. Then

X is connected <= Y isconnected

The proof follows immediately by Theorem 3.91, and is left to the reader as an exercise.
Example 3.93
Let n > 2. R" not homeomorphic to R.
Proof. Suppose by contradiction that there exists an omeomorphism
f:R"—>R.
Define p = f(0) and the restriction
g: RIN{0} = R\{p}, g(x) = f(x).

Since g is a restriction of an omeomorphism, then g is an omeomorphism. We have that
R™ \ {0} is connected, as a consequence of

Example 3.90. Hence, by Corollary 3.92, we infer that R \ {p} is connected. This is a contra-
diction, since R\ {p} is disconnected, as shown in Example 3.89.

Example 3.94

Define the 1D unit circle
$! :={(x,y) €eR? : x*+y?=1}.
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Then $! and [0, 1] are not homeomorphic.

Proof. Suppose by contradiction that there exists and omeomorphism
f:[0,1] > S,

The restriction of f to [0, 1] \ {%} defines an omeomorphism

g: ([0,1]\{%})%(51\@}), P :f(l>

2

The set [0, 1] \ {%} is disconnected, since

[0, 1]\ {1/2} = [0,1/2) v (1/2,1]

with [0,1/2) and (1/2, 1] open for the subset topology, non-empty and disjoint. Therefore,
using that g is an omeomorphism, we conclude that also $! \ {p} is disconnected. Let 6, €
[0, 27r) be the unique angle such that

p = (cos(6h), sin(6p)) -
Thus $* \ {p} is parametrized by
y(@) := (cos(t),sin(t)), t € (6,0 + 2r).

Since y is continuous and (6, 6 +27) is connected, by Theorem 3.91, we conclude that $'\{p}
is connected. Contradiction.

3.13 Intermediate Value Theorem

Another consequence of Theorem 3.91 is a generalization of the Intermediate Value Theorem to arbitrary
topological spaces. Before providing statement and proof of such Theorem, we need to characterize the
connected subsets of R.

Definition 3.95: Interval
A subset I C R is an interval if it holds:

Vabel,xeR st.a<x<b = xe€l.
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Theorem 3.96

Let R be equipped with the Euclidean topology and let I C R. They are equivalent:

1. I is connected.
2. I1is an interval.

Proof

Part 1. Suppose I is connected. If I = {p} for some p € R then I is an interval and the thesis is achieved.
Otherwise there exist a,b € I with a < b. Assume that x € R is such that

a<x<b.
We need to show that x € I. Suppose by contradiction that x ¢ I and define the open sets
A=(—00,x), B=(x,0).

Then
A= (-0, x)nI, B=(x,00)nI

are open in [ for the subspace topology. Clearly

AnB=

©

Moreover

ool]

I=Au

since x ¢ I. We have:

« Since a < x and a € I, we have thata € A. Therefore A # @.
o Similarly, b > x and b € I, therefore b € B. Hence B # @.

Therefore I is disconnected, which is a contradiction.
Part 2. Suppose I is an interval. Suppose by contradiction that I is disconnected. Then there exist A, B
proper and closed, such that

I=AuB, AnB=0.

Since A and B are proper, there exist points a € A, b € B. WLOG we can assume a < b. Define
a=sup S, S:={xeR: [a,x)nIC A}
Note that « exists finite since b is an upper bound for the set S.

Suppose by contradiction b is not an upper bound for S. Hence there exists x € R such that
[a,x)n]I C Aandthat x > b. Asb > a, we conclude thatb € [a,x)nI C A. Thus b € A, which
is a contradiction, since b € Band An B = @.

Moreover we have that a € A.
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This is because the supremum « is the limit of a sequence in S, and hence of a sequence in
A. Therefore a belongs to A. Since A is closed, we infer o € A.

Note that A° = B, which is closed. Therefore A° is closed, showing that A is open. As ¢ € A and A is
open in I, there exists ¢ > 0 such that

(a—ega+e)nICA.

In particular
[a,a +e)nICA,

showing that @ + ¢ € S. This is a contradiction, since « is the supremum of S.
We are finally ready to prove the Intermediate Value Theorem.
Theorem 3.97: Intermediate Value Theorem

Let (X,J) be a connected topological space. Suppose that f: X — R is continuous. Suppose that
a,b € X are such that f(a) < f(b). It holds:

VeceR st fla)<c< f(b), 3¢ e X st. f(é)=c.

Proof

As f is continuous and X is connected, by Theorem 3.91 we know that f(X) is connected in R. By
Theorem 3.96 we have that f(X) is an interval. Since a,b € X it follows f(a), f(b) € f(X). Therefore, if
¢ € Ris such that

fla@) <c< f(b)
we conclude that ¢ € f(X), since f(X) is an interval. Hence there exists & € X such that f(¢) = c.

3.14 Path connectedness

Definition 3.98: Path connectedness

Let (X, J) be a topological space. We say that X is path connected if for every x,y € X there exist
a,b € R with a < b, and a continuous function

a: la,b] > X

such that
a(@)=x, abd)=y.
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Example 3.99
Let A C R" be convex. Then A is path connected.
A is convex if for all x, y € A the segment connecting x to y is contained in A, namely,
[x,y] :={(1—t)x+ty : te[0,1]}CA.
Therefore we can define
a: [0,1] > A, a) =1 —-t)x+ty.

Clearly « is continuous, and «(0) = x, a(1) = y.

It turns out that path-connectedness implies connectedness.
Theorem 3.100

Let (X, J) be a path connected topological space. Then X is connected.

Proof

Suppose that X = A u B with A,B € 9 and non-empty. In order to conclude that X is connected, we
need to show that
AnB#Q.

Since A and B are non-empty, we can find two points x € A and b € B. As X is path connected, there
exists & : [0,1] — X continuous such that

a(0)=x, a(l)=y.

In particular
al(A)20, al(B)=02.

Moreover

[0,1] = & 1(X)
=a 1(AuB)
=a (A uva l(B).

As a is continuous, « 1(A) and &~ !(B) are open in [0, 1]. Suppose by contradiction that An B = @. Then
al(ADna !B =al(AnB)=a (@) =0.
Hence [0, 1] is disconnected, which is a contradiction. Therefore A n B = @ and X is connected.

The converse of the above theorem does not hold. A counterexample is given by the so-called topologist
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curve, which will be examined in Proposition 3.102. Prior to this, we need a basic Lemma.
Lemma 3.101

Let (X, J) be a topological space. Let A,U C X with A connected and U open and closed. Suppose that
AnU = @,then ACU.

Proof

The following set identities hold for any pair of sets U and A:

A=(AnU)u(AnU®
2=(AnU)n(AnU°

Now, suppose by contradiction A € U. This means A n U® # @. By assumption we also have AnU # @.
Moreover the sets AnU and A nU° are open for the subspace topology on A, since U and U® are open in
X. Hence A is the disjoint union of non-empty open sets, showing that A is disconnected. Contradiction.
We conclude that A C U.

Proposition 3.102: Topologist curve
Consider R? with the Euclidean topology and define the sets
X :=AuB
where
. (1
A= {(t, sm(;)) T t> 0}
B :={(0,t) : te[-1,1]}

Then X is connected, but not path connected.

Proof

Step 1. X is not path connected.
Let x € A and y € B. There is no continuous function « : [0,1] = X such that a(0) = x and a(1) = y. If
such « existed, then we would obtain a continuous extension for ¢t = 0 of the function

f() = sin(%) , x>0

which is not possible. Hence X is not path connected.
Step 2. Preliminary facts.

« A is connected: Define the curve y : (0,00) — R? by

0= on(t).
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Clearly y is continuous. Since (0, ®) is connected, by Theorem 3.91 we have that y((0,00)) = A is
connected.

« Bis connected: Indeed B is homeomorphic to the interval [—1,1]. Since [—1,1] is connected, by
Corollary 3.92 we conclude that B is connected.

« A = X: This is because each point y € B is of the form y = (0,,) for some ¢, € [-1,1]. By
continuity of sin and the Intermediate Value Theorem there exists some z > 0 such that

sin(z) = ¢, .
Therefore z, := z + 2nr satisfies
z, > o, sin(z,) =1t;, Vne€N.

Define s,, : = 1/z,. Trivially

. (1
s, =0, sm(—)zto, vn eN.
Sn

(sn, sin (i)) — (0,1p).

Hence the set B is contained in the set L(A) of limit points of A. Since we are in R?, we have that
L(A) = A, proving that BC A. Thus A= AuB=X.

Therefore we obtain

Step 3. X is connected.

Let U C X be non-empty, open and closed. If we prove that U = X, we conclude that X is connected. Let
us proceed.

Since U is non-empty, we can fix a point x € U. We have two possibilities:

« x € A: In this case AnU # @. Since A is connected and U is open and closed, by Lemma 3.101 we
conclude A CU. AsU is closed and contains A, then A C U. But we have shown that
A=X,
and therefore U = X.

e x € B: ThenU n B # @. Since B is connected and U is open and closed, we can invoke Lemma 3.101
and conclude that B C U. Since (0, 0) € B, it follows that

(0,0) €eU.

As U is open in X, and X has the subspace topology induced by the inclusion X C R?, there exists
an open set W of R? such that
U=XnW.
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Therefore (0,0) € W. As W is open in R?, there exists a radius ¢ > 0 such that
B.(0,0) CW.

Hence
XnB(0,0)CXnW=U.

The ball B,(0, 0) contains points of A, and therefore
AnU=*Q.

Since A is connected and U is open and closed, we can again use Lemma 3.101 and obtain that
A CU. Since we already had B C U, and since U C X = A u B, we conclude hence U = X.

Therefore U = X in all possible cases, showing that X is connected.
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4 Surfaces

Curves are 1D objects in R3, parametrized via functions y : (a,b) — R3. There is only one available direction
in which to move on a curve:

« t — y(t) moves forward on the curve
« t — y(—t) moves backward on the curve

¥(-t)
gty

Figure 4.1: Sketch of a curvey.

Surfaces are 2D objects in R3. There are two directions in which one can move on a surface.

166
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N2

ToRus
SPUHeRE
C Y s
' BAND

Figure 4.2: Sketch of a surfaces: Sphere, Torus, Mébius band.

Question 4.1

How to dercribe a surface mathematically?

A curve I' C R® can be described with one functiony : (a,b) — I'. The idea is that T looks locally like R.

r

(%)

R

@)
®

Figure 4.3: A curve I can be described by a functiony : (a,b) — T.
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A surface & cannot be described, in general, with just one functiono : U —» &, with U C R? open set. The
idea is that, to describe &, one needs to piece together many local charts a;: Uy — & with U; € R? open.
Such charts have to cover the whole surface &, e.g.

§ = Jai).

N

Figure 4.4: A surface § can be described by a family of charts ¢, : U; — & with U; C R? open set.

4.1 Preliminaries

Before proceeding with the formal definition of surface, we need to establish some basic notation and termi-
nology regarding linear algebra, the topology of R", and calculus for smooth maps from R" into R™.

4.1.1 Linear algebra

Definition 4.2: Bilinear form
Let V be a vector space and B: V xV — R. We say that:
+ Bis bilinear if

B(Ayvy + Apvg, w) = A1 B(v, W) + A,B(vo, W),
B(W, /11V1 + Asz) = AlB(W, Vl) + AzB(W, V2) .

forallv,weV, 4 €R.
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« Bis symmetric if
B(v,w) = B(w, V)

forallv,weV.

A bilinear map B is called bilinear form on V.

Notation

Let V be a vector space with basis {vy, ..., v,}. Then, for a vector v € V there exist coefficients Ay, ..., A,
such that
V=4V +..+A4,v,.

We denote the vector of coefficients of v by the column vector
. T n
X ‘= (Al,...,)‘.n) e R".
The coefficients of a vector w are denoted by

Y o= (s )"

Bilinear forms can be represented by a matrix.
Remark 4.3: Matrix representation for bilinear forms
Let {vy, ..., v,} be a basis for the vector space V. Given a bilinear form B: VxV — R we define the matrix
M:= (B(vi,vj))zjz1 € R

Then
Blv,w)=x My.

Proof. We can write v and w in cordinates as
n n
V=Z)Liv,-, W:ZHiVi,
i=1 i=1

for suitable coefficients /;, y; € R. Using bilinearity of B we get

n n
B(v,w) =B (Z Avi, Z pjvj>
i=1 j=1

n
= Z Ai;ujB(Vi’ V])
i,j=1

= XTMY.
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Definition 4.4: Quadratic form

Let V be a vector space and B: V xV — R be a bilinear form. The quadratic form associated to B is the
map
Q: V>R, Q(v):=B(v,v).

A symmetric bilinear form is uniquely determinded by its quadratic form, as stated in the following proposi-
tion.

Proposition 4.5
Let B: V xV — R be a symmetric bilinear form and Q : V' — R the associated quadratic form. Then
1
Blu,v) = 2 (Qv +w) = Q(v) = Q(w)) .

forallv,weV.

The proof is an easy check, and is left as an exercise.
Definition 4.6: Inner product
Let V be a vector space. An inner product on V is a symmetric bilinear form (-,-) : V xV — R such that
(v,v) >0, VveV.
Moreover:

+ The length of a vector v € V with respect to B is defined as
vl == (v, v).

« Two vectors v,w € V are orthogonal if

(v,w)=0.

Example 4.7

Let V = R" and consider the euclidean scalar product

n
V'W:ZViWi,
=1

where v = (v, ...,w,), w = (wy, ..., w,). Then
(v,w) :=v-w

is an inner product on R".

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 171

Proposition 4.8

Let V be a vector space and (-, -) an inner product on V. There exists an orthonormal basis {vy, ..., v,}

of V, that is, such that

1 ifi=j

<Vi’ Vj> = e
0 ifi#j

In particular, the matrix M associated to (-, -) is the identity.

Definition 4.9: Linear map
Let V, W be vector spaces and L : V — W. We say that L is linear if
L(Av + pw) = AL(v) + pL(w)

forallv,weVand A,z € R.

Remark 4.10: Matrix representation of linear maps

Let V, W be vector spacesand L : V — W be a linear map. Let {v,..., v, } be abasis of V and {wy, ..., w,,}
be a basis of W. Then there exists a matrix M € R™" such that

Lv=Mx, VveV.

Specifically, M € R™" is called the matrix associated to L with respect to the basis {vy,...,v,} of V and
{fwi...,w,} of W, and is defined by

where the coefficients g;; are such that

m

L(vj) = a1jWy + ... + Gy jWy, = Z aGiw; .
i=1

In other words, the columns of M are given by the coordinates of the vectors L(v;) with respect to the
basis {wy,..., wp,}.

Definition 4.11: Eigenvalues and eigenvectors
Let V be a vector space and L : V — V a linear map. We say that A € R is an eigenvalue of L if
L(v) = Av

for some v € V with v # 0. Such v is called eigenvector of L associated to the eigenvalue A.
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Definition 4.12: Self-adjoint map
Let V be a vector space, (-, -) an inner product and L : V — V a linear map. We say that L is self-adjoint
if

(v, L(w)) =(L(v),w), Vv,weV.

Theorem 4.13: Spectral Theorem

Let V be a vector space, (-,-) an inner product, and L: V — V a self-adjoint linear map. There exist an
orthonormal basis of V

Vi, ., v},

where v; are eigenvectors of L, that is,
LVl' = /Iivi

for some eigevalue 4; € R. In particular, the matrix of L with respect to the basis {vy, ..., v,} is diagonal:

A0 .0
M = diag(/h, ,An) = 0 AZZ O
0 0 ... A

There is also a matrix version of the spectral theorem. To state it, we need to introduce some terminology.
Definition 4.14

Let A € R¥" be a matrix. We say that:

+ Ais symmetric if

+ Ais orthogonal if

where [ is the identity matrix.

Remark 4.15

Let L: V — V be linear and A € R™" be the matrix associated to L with respect to any basis {vy, ..., v,}
of V. They are equivalent:

« L is self-adjoint,
+ A is symmetric.
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Definition 4.16: Matrix eigenvalues
Let A € R be a matrix. An eigenvalue of A is a number A € R such that
Av = v,

for some v € R” with v # 0. The vector v is called an eigenvector of A with eigenvalue A.

Remark 4.17

Let A € R The eigenvalues of A of A can be computed by solving the characteristic equation
P(A) =0,
where P is the characteristic polynomial of A, defined by

P(L) := det(A — AI).

L(v)=Ax, VveV,
where x € R" is the vector of coordinates of v. They are equivalent:

+ Ais an eigenvalue of L of eigenvector v,
+ Ais an eigenvalue of A of eigenvector x.

Theorem 4.19: Spectral Theorem for matrices

Let A € R™" be a symmetric matrix. Consider R" equipped with the euclidean scalar product. There
exist an orthonormal basis of V

Vi, Vit

where v; are eigenvectors of A, that is,
AVI' = /11‘Vi

for some eigevalue 4; € R. Moreover
A =PDPT,

Remark 4.18
Let L: V — V be a linear map and A the associated matrix with respect to any basis of V. Then
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where
P := (V1|...|Vn)
},1 0o ... 0
D := diag()tl, ;An) = 0 A:l . 0
0 0 ... A

Remark 4.20

The corresponedence between Theorem 4.13 and Theorem 4.19 is as follows. Let A € R™" be symmetric
and {wy, ..., w,} be any orthonormal basis of the vector space V. Define the linear map L : V — V such
that

n
L(V]): Zaijwi’ Vj:].,...,n.
i=1

In this way A is the matrix associated to L with respect to the basis {wy, ..., w,}. Then L is self-adjoint.
Moreover L and A have the same eigenvalues. By the Spectral Theorem there exists an orthonormal
basis {vy, ..., v,} of V such that the matrix of L with respect to such basis, say D, is diagonal. Then

A = PDPT

where P is the matrix of change of basis between {wy, ..., w,} and {vy, ..., v,}, thatis, P = (p,-j) where

n
Wi =D Divi.
=1

4.1.2 Topology of R”

The Euclidean norm on R” is denoted by

n
Ix] = inz, x = (xq,...,%,) € R".
i=1

The Euclidean norm induces the distance

dx,y) :=[x—-yl =
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Definition 4.21: Euclidean Topology

The pair (R", d) is a metric space. The topology induced by the metric d is called the Euclidean topology,
denoted by I . In this chapter we will always assume that R" is equipped with the Euclidean topology
J.

Definition 4.22: Open Sets
A set U C R" is open if for all x € U there exists ¢ > 0 such that B.(x) C U, where
B(x) :={y eR" : |x—y| <&}

is the open ball of radius ¢ > 0 and centered at x. In this case we denote U € , with I the Euclidean
topology in R".

Definition 4.23: Closed Sets

AsetV CR"isclosed if V¢ := R*\ U is open.

Example 4.24

« The n-dimensional unit sphere
" ={x e R : |x| =1}

R™*1, since for any x € $" we have

B,(x) £ §".

is not open in

+ The n-dimensional unit cube
C:={xeR": |[xi|+...4+ x| < 1}
is open in R”, since one can always find ¢ > 0 small enough so that
B.(x)Z C.

« The set
Vi={xeR": |x|+..+|x|>1}

is closed, since V¢ = C is the unit cube, which is open.

Definition 4.25: Subspace Topology

Given a subset A C R" the subspace topology on A is the family of sets

Ty :={UCA: IWEeT st. U=AnW}.
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IfU € T4 we say that U is open in A.

4.1.3 Smooth functions

We recall some basic facts about smooth functions from R" into R™. For a vector valued function f : R" - R™
we denote its components by

f=Us fmd

Definition 4.26: Continuous Function

Let f: U CR" -» R™ with U open. We say that f is continuous at x e U if Ve > 0,, 36 > 0 such that

x-yl<é = IfG®-fyl<e.

We say that f is continuous in U if it is continuous for all x € U.

Remark 4.27

Let f: U CR" — V C R™, with U,V open. We have that f is continuous if and only if f~!(A) is open in
U, for all A openinV.

Let f: U CR" - V C R" with U,V open. We say that f is a homeomorphism if f is continuous and
there exists inverse f~! : V — U continuous.

Definition 4.29: Differentiable Function

Let f: U C R" —» R™ with U open. We say that f is differentiable at x € U if there exists a linear map
dfy : R" - R™ such that
o eh) - f) - ed )

e—0 £

b

for all h € R", where the limit is taken in R™. The map d f is called the differential of f at x.

| Definition 4.28: Homeomorphism

We denote by {e;}j-; the standard basis of R".
Definition 4.30: Partial Derivative

Let f: U C R* - R™ with U open be differentiable. The partial derivative of f at x € U in direction e;
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is given by

of . flxtee) = f(0)

8xi e—0 £

Definition 4.31: Jacobian Matrix

The linear map dfy : R* — R™ can be represented in matrix form, with respect to the Euclidean basis,
by the Jacobian matrix
o

JFGO 1= ( ) e R
8xj ..
L]
If m = nthen Jf € R¥" is a square matrix and we can compute its determinant, denoted by

det(J ).

For a multi-index
a:=(a,...,a,) € N

we denote by
n

jaf := ) lasl
i=1

the length of the multi-index.

Definition 4.33: Smooth Function

Let f: U C R* -» R™ with U open. We say that f is smooth if the derivatives

Mf am om

- [22 a
dx® ox;'  Oxy"

f

exist for each multi-index @ € IN". Note that in this case all the derivatives of f are automatically
continuous.

Notation: Gradient and partial derivatives

Let f: U C R* — R be smooth. We denote the partial derivatives by

af:ﬁ a f: azf a f.: a3f
i ox; N ox0x; Ik 9x,0%;0%)

| Definition 4.32: Multi-index notation
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For f: U C R" — R smooth we denote the gradient by

VI®) = (fo, &), fr, () -

Example 4.34
The functions f : R? - Rand g: R? — R® defined by

f(x,y) i=cos(x)y, g(x,y) :=(x%y%x—y)

are both smooth.

Definition 4.35: Diffeomorphism

Let f: U » V withU C R" and V C R” open. We say that f is a diffeomorphism between U and V if
f is smooth and there exists smooth inverse f~1: V — U.

We recall, without proof, the Inverse Function Theorem. Please note that in the statement the function f is
defined from R"” into R".

Theorem 4.36: Inverse Function Theorem
Let f: U —» R" with U C R" open. Suppose f is a smooth function and
det J f(xq) # 0,

for some x;, € U. Then there exist open sets Uy, V C R” such that x5 € Uy, f(xg) € Vand f: Uy > Visa
diffeomorphism.

Warning

Even if

det Jf(x) # 0,
for all x € U, it is not guaranteed that f is a diffeomorphism between U and f(U).

Non-vanishing Jacobian determinant is a necessary condition for being a diffeomorphism.
Proposition 4.37
Let f: U —» R" with U C R" open. Suppose f is a diffeomorphism on U. Then

det Jf(x)#0, vVxeU.
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Example 4.38

Define f : R> — R? by
f(x,y) := (cos(x) sin(y), sin(x) sin(y)) .

Then in(x) sin(y) cos(x) cos(y)
[ —sin(x)sm(y) cos(x)cos(y
iy = ( cos(x)sin(y)  sin(x) cos(y) ) '
and
det ] f(x, y) = = sin”(x) cos(y) sin(y) ~ cos*(x) cos(y) sin(y)

= —sin(y) cos(y)

= —% sin(2y).
Therefore

det Jf(x,y) #0 <= yin?”,nelN.

Hence f is a diffeomorphism away from the lines

4.2 Definition of Surface

We give our main definition of surface in R3.
Definition 4.39: Surface

Let & C R® be a connected set. We say that & is a surface if for every point p € & there exist an open
set U C R? and a smooth map
c:U—-oclU)CS

such that

« peco(U)
« o(U)isopenin &
« 0 is a homeomorphism between U and o(U)

Further:

« The homeomorphism ¢ is called a surface chart at p.
« For each i € I suppose to have a surface chart

o U—>aU)CS.
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We say that the family
A ={o}ier
is an atlas of & if
S = Jou@).
i€l
Remark 4.40
« A surface chart o is a map
oc:U—>R3 ,

with U C R? open. Therefore smoothness of ¢ is intended in the classical sense.

« Given a chart 6 : U — a(U), the set U is open in R? while 6(U) is open in & with the subspace
topology. This means that there exists W C R® open such that

cU)=Wnd&.

« The omeomorphism condition is saying that 6(U) C & looks locally (around p) like an open set
UCR

N

C)=wns,
W SR> OPeN

JeR? oP

Figure 4.5: Sketch of the surface & and charte: U — o(U) C §. The set U C R? is open in R? and a(U) is
open in §. This means there exists W open in R? such that 6(U) = & n W.
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Notation

« Points in U will be denoted with the pair (u,v).
« Partial derivatives of a chart ¢ = a(u, v) will be denoted by

v g
ouw YT o

Similar notations are adopted for higher order derivatives, e.g.,

o_uu::82_o" G, = %o ,
ou? ouov
VT gvou” Ow =520

+ Components of o will be denoted by

o =(c',0%0%).

Example 4.41: 2D Plane in R3

Planes in R? are surfaces with atlas containing one chart. Namely, a plane 7 C R? is described by
r={xeR: x-w=41}.

Let

« p.q € R3 be ortoghonal to each other and to w.
« a € 1 be any point in the plane.

If x € 7 then x — a is parallel to the plane and 7 can be equivalently represented as
r={a+up+vq: uveR}.

Define the map
o: R >, ouv) =a+up+vq.

We have:

« 0 is smooth.

« R? is obviously open.

o(IR?) is open in 7, since (R?) = 7.
« The inverse of o is

ol >R, o'(x)=(x-a)-p,(x—2a)q).
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« As o !is continuous, then o is a homeomorphism between R? and 7.

Therefore o is a chart for . Since
oR) =1,

we have that {o} is an atlas for s, and hence 7 is a surface.

Tye)= a +up+rq

— —

Aw

D

Figure 4.6: A plane 7 is a surface with atlas containing a single chart o : R? — 7.

Example 4.42: Unit cylinder
Consider the infinite unit cylinder
S ={(x,y,2) €R®: x> +y%?=1}.
& is a surface with an atlas consisting of two charts:
o;: U >R o;uv) :=(cos(u),sin(u),v)
fori =1, 2, where

Ul 3:<0,3?7[>X1R, UZI:<7T,5—7T)X]R.

Indeed:

« 0, is smooth.
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U, is clearly open in R?.

One can check that a;(U}) is open in &
o0; is a homeomorphism of U; in o(Uj;).

« {01,0,} is an atlas for &, since

S =01U)voyUy).

T3 (Uy) %(d;)
A /

S N W

/-‘
|
|
|
[
|
|
|
|
|
|
|
|

>

—

Uy = (DJ%X) x R UL‘(’T) %7['))( IR
Figure 4.7: Unit cylinder & is a surface with atlas & = {6,0,}. Depicted are the images ¢1(U;) and a,(U;).
Important

Consider again the unit cylinder

S ={x,y,2)eR>: x> +y?=1}.

Define the map
o:U—->R, o(uv) :=(cos(u),sin(u),v)
where
U :=[0,27] xR.
Clearly we have
ocU)=3¢8.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 184

However {0} is not an atlas for &, since ¢ is not a chart. This is because ¢ is not invertible, as for example
6(0,0) = 0(271,0).

Therefore o cannot be an omeomorphism between U and &§'.

Example 4.43: Graph of a function
Let U C R? be open and f : U — R be smooth. The graph of f is the set
Tp={wv, f(wv) : (wv)eU}.
We have that I'; is a surface with atlas given by
oA = {o}

whereo : U — Tf is

o(u,v) := (u,v, f(u,v)).
Let us check that T f is a surface:

« 0 is smooth since f is smooth.

. U is open in R? by assumption.

« 0(U) =Ty, and therefore ¢(U) is open in I'y.

» The inverse of o is given by 6 : I'y — U defined as

o(u,v, f(u,v)) := (u,v).

Clearly ¢ is continuous.
Therefore 6 is a homeomorphism of U into I'y.
o ={o}is an atlas for T'f, since

I“f = O'(U).

Let us conclude the section with an example of a set which is not a surface.
Example 4.44: Circular cone

Consider the circular cone
S ={(x,y,2) €R® : x?+y? =2%}.

Then & is not a surface. This is essentially consequence of the fact that
S\ {0}

is a disconnected set.
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To see that & is not a surface, suppose there exists an atlas {o;} of &
o;:U—-o(U)CS.
In particular there exists a chart o such that
0co(U).

Let x( € U be the point such that
O'(Xo) =0.

Since U is open in R?, there exists ¢ > 0 such that B,(x,) C U. Since & is a homeomorphism, we deduce
that

0(B(x0))

is open in &. Hence there exists an open set W in R> such that
0(By(x0)) =a(U)n W .
As 0 € 6(B,(xg)), we conclude that 0 € W. Since W is open in R3, there exists § > 0 such that
Bs(0) cW.

In particular we deduce that
Bs(0) na(U) € o(B.(x)).

Hence a(B,(x,)) contains points of both &~ and &, with
ST :=8nfz<0}, ST :=8n{z>0}.

This implies that
V i = 0(By(x0)) \ {0}

is disconnected, with disconnection given by
V=WVnS)ulVnsSh).

However V is homeomorphic to
Be(x0) \ {Xo},

which is instead connected. Contradiction. Hence & is not a surface.
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Figure 4.8: The circular cone is not a surface. This is because & \ {0} is disconnected.

4.3 Regular Surfaces

We have defined a regular curve to be amapy : (a,b) - R" such that
ly@®|#0, vte(ab).

This allowed us to define tangent vectors and, eventually, Frenet frame.

We want to do something similar for surfaces: We look for a condition that eventually will allow us to define
tangent planes. This is why we introduce regular charts and regular surfaces.

Definition 4.45: Regular Chart

Let U C R? be open. A map
c=0(uv): U—R

is called a regular chart if the partial derivatives

o,(u,v) = d—a(u, v), o,(uv)= Z—:(u, V)

du

are linearly independent vectors of R? for all (u,v) € U.

The following gives more insight into the regularity condition.
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Proposition 4.46

Let U C R? be open and consider a map
o:U—R.

They are equivalent:
1. ¢ is a regular chart.

2. The differential doy : R> — R is injective for all x € U.
3. The Jacobian matrix

ol ol
Jo(u,v)=| o2 o2
ol oo

has rank 2 for all (u,v) € U.
4. It holds
o,%x0,#0 V(uv)eU.

Proof

Part 1. Equivalence of Point 1 and Point 4.
By the properties of vector product, we have that

o,x0,#0 V(uv)eU

if and only if 6, and o, are linearly independent for all (u,v) € U.
Part 2. Equivalence of Point 2 and Point 3.
The differential doy : R? — R® is represented in matrix form by the Jacobian

o oy

_ 2 2
Jo(u,v) =\ o o}
3 3

Gu O-V

By standard linear algebra results, Jo has rank 2 if and only if do is injective.

Part 3. Equivalence of Point 1 and Point 3.

A 3 x 2 matrix has rank 2 if and only if its columns are linearly independent. Since the columns of Jo are
o, and g, we conclude that 6, and o, are linearly independent.

We are now ready to define regular surfaces.
Definition 4.47: Regular surface

Let & be a surface. Let
A ={0}icr »
be an atlas for &'. We say that:

« o is a regular atlas if the map o; is a regular chart for alli € I.
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« & is a regular surface if there exists a regular atlas for &.

Example 4.48: 2D Plane in R
Let a, p, q € R®, with p and q orthogonal. We have shown that the plane
r={at+up+vq: u,veR}
is a surface with atlas &/ = {6}, where
6: R >, o(uv):=a+up+vrq.
Then 7 is a regular surface, because o is a regular chart. To see this, compute
oy,=p, 0y=q.

Since p and q are orthogonal, then they are linearly independent. Thus 6, and g, are linearly indepen-
dent, and o is a regular chart.

Example 4.49: Unit cylinder
Consider the infinite unit cylinder
S ={(x,y,2) €R®: x> +y%?=1}.
We have seen that & is a surface with atlas o = {61,6,} where we define
o: R >R, o) :=(cos(u), sin(u),v)
and
01 1:0'|U1» 0'21:0'|U2»

Ul 3:<0,?>X]R, U25:<77,',—)><]R.

We have that § is a regular surface, since the atlas & is regular. Indeed:

oy = (_ Sin(u)s COS(U), 0) s o, = (0’ 0’ 1) s
and therefore

o, %0, = (cos(u),sin(u),0), |o,xo,|=1.
This implies
6,%x0, %0, V(uv)eR?,

showing that 6, and g, are linearly independent. Therefore 6 and g, are regular charts, being restric-
tions of o.
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Example 4.50: Graph of a function
Let U C R? be open and f : U — R be smooth. The graph of f is the set

Tp:= {(w,v, f(u,v)) : (u,v) € U}.

We have seen that I'f is surface with atlas given by of = {6}, whereo : U — T is

o(u,v) := (v, f(u,v)).

We have that T’ f is regular, since & is a regular atlas. Indeed,

au = (1’ 0’ fu) H o-v = (0; 1, fv) )
and so
au x o, = (_fua _fv: 1) =0 P

since the last component never vanishes. Therefore o, and o, are linearly independent and o is a regular
chart.

Example 4.51: Unit sphere
Consider the unit sphere in R?

2:={(x,y,2) €R> : x> +y*+22=1}.
We have that $? is a regular surface, with regular atlas

_{o-ll 1>

defined as follows: Let
U:={uv)eR: v*++v* <1}

be the unit open ball in R? and define o, : U — R3 by
o1(u,v) = (u w1 —u? — v2)
oa(u,v) = (v, —1 -2 —42)
o3(uv) = (w1 u =12, v)
o) = (1w, —1—u2 =2, v)
(
(

os(u,v) = (V1 —u? -2 uv)
os(u,v) = (—V1—u? -2 uv)

Exercise: Check that $ is a regular surface.
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Remark 4.52: Spherical coordinates

The equivalent of polar coordinates in dimension 3 are spherical coordinates. A point (x, y, z) € R® \ {0}
can be represented in spherical coordinates by

x = pcos(0) cos(¢)
y = pcos(0) sin(¢)
z = psin(6)

pi={xrytez, gelozn, oe[-ZZ],

with the angles ¢ and 6 as in Figure Figure 4.9.

where

It is clear that z = psin(6), by basic trigonometry. To compute x and y, we note that the
segment joining 0 to p has length
L = pcosé.

Therefore we get

x = Lcos(¢p) = p cos(0) cos(¢)
y = Lsin(¢@) = p cos(0) sin(¢)

concluding.

Example 4.53: Unit sphere in spherical coordinates

Consider again the unit sphere in R
$2 :={(x,y,2) €R® : x*+y?+2%2=1}.
We want to give an alternative atlas for $2 based on spherical coordinates. To this end, define

U::{(e,qﬁ)e]Rz: —%<0<%, 0<¢<27r}

ando : U — R3 by
0(0,¢) := (cos(0) cos(¢p), cos(0) sin(¢), sin(h)) .
We have:

« 0 is smooth.
« U is open in R?.

» Moreover
o(U) =8\ {(x,0,2) e R® : x>0},

as seen also in the left picture in Figure 4.10.
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C)C, cg,,?:\

\v2
aL

Figure 4.9: Spherical coordinates in R3.

« The set 6(U) is evidently open in $2.
« It is easy to check that ¢ is invertible, with continuous inverse.

« Thus o is a homeomorphism from U into o(U).

Let us check that o is a regular chart:

oy = (—sin(0) cos(¢), — sin(0) sin(¢), cos(6))
o4 = (—cos(0) sin(¢), cos(6) cos(¢),0) .
Therefore
ogx0h=(— cos?(0) cos(¢), — cos?(0) sin(¢), — sin(f) cos(8)),

from which
Hag x 0'¢H =|cos(0)|.

Since (0, ¢) € U, we have 0 € (—n/2,7/2), and so

||0'9 ><0'¢|| =|cos(0)| =0,
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showing that o9 and o4 are linearly independent, and o is regular.
Since a(U) # $2, the chart ¢ does not form an atlas. We need a second chart. An option is to define
6: U — R3by

6 := (—cos(0) cos(¢), — sin(d), — cos(0) sin(¢)) .
Notice that & is obtained by rotating o by 7 about the z-axis and by /2 about the y-axis, as seen in the
right picture in Figure 4.10. It is an exercise to check that ¢ is a regular chart.

Since we have
G(U) = $2\{(x,7,0) € R® : x <0},

it is immediate to see that
$2 =) ue(U).

Hence

o :={o,06}

is a regular atlas for $2.

-0.5

1.0
0.5

0.0
-0.5 -0.5
y -1.0 -1.0

Figure 4.10: Image of the charts of the sphere from the above example.

Let us make an example of a non-regular surface.
Example 4.54

The surface parametrized by
o(u,v) = u,v%,v*), V(uv)eR?
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is not regular. This is because
au = (1’050); o-v = (0, 2V, 3V2)

and therefore
o-V(u’ 0) = (0: 05 0) )

showing that o, and o, are linearly dependent along the line
L={u,0): ueR}.

Hence o is not a regular chart.
Looking at Figure Figure 4.11, it is clear that & is not regular, since & has a cusp along the line o(L).

Figure 4.11: Example of non-regular surface.

4.4 Level surfaces

Definition 4.55: Level surface

Let V C R® be an open set and f : V — R be smooth. The level surface associated with f is the set

Sy =10 ={(x.y.2) €V : flx,y.2)=0}.

We now give a result concerning regularity of level surfaces. The proof, rather technical, is based on the
Implicit Function Theorem and can be found in Proposition 3.1.25 of [1]. We decide to omit it.
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Theorem 4.56
Let V C R® be an open set and f : V — R be smooth. Consider the level surface
Sr={(xy.2) €V : f(x,y,2) =0}.

Suppose that
Vf(x,y,2) #0, VY(x,y,2)€V.

Then &’ is a regular surface.

Example 4.57
We want to determine if the set defined by the equation
S ={xy,2)eR: x> +y2=1}

is a regular surface. Note that & is a unit cylinder: From Example 4.49 we already know that & is a
regular surface.
Let us prove that & is regular by using Theorem 4.56. To this end, define the open set

V :=R3\{(0,0,2) : z€R}.
Note that V is obtained by removing the z-axis from R3. Also define the function f : R®> — R by

f(x,y,2) ::x2+y2—1.

We have
Vfi(x,y,2) = (2x,2y,0) #0, V(x,y,z)€V.

Since

S =Sy,

by Theorem 4.56 we conclude that & is a regular surface.

Example 4.58: Circular cone
We saw that the circular cone
S ={(x,y,2) €R® : x?+y% =2°}.
is not a surface. However the positive sheet
St i={(x,y,2) eR® : x2+y?=2%, 2> 0}.
is a regular surface, see Figure 4.12 Indeed, define the open set

Vi={(x,y,2) €R®: z>0}
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and the function f : V — Rby
flx,y,2) := x2 +y2 —Z2,

We have
Vf(x,y,2) = (2x,2y,-22) #0, V(x,y,2)€V.

Since

St =8y,

by Theorem 4.56 we conclude that & is a regular surface.
As a side note, a regular atlas for §* is given by of = {6} where 6 : R?> - R is defined by

o(u,v) := (u,v,Nu? +v2).

Figure 4.12: Positive sheet of circular cone.

4.5 Reparametrizations

We have defined the reparametrization of curves. In a similar way, one can reparametrize surface charts.
Definition 4.59
Suppose that U,U C R? are open sets and

c:U—>R} 6: [~]—>]R3,
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are surface charts. We say that ¢ is a reparametrization of o if there exists a diffeomorphism
®:U->U ,

such that
6=0°0,

that is, _
o(u1,v) =o(®(@,v)), V@v)eU.

We call ® a reparametrization map.

S

o~
(

R

AV

/4 \
-4
£
C) 14
1 1
W\U Nl\i
O

$

> >ev
w0 LIV

Figure 4.13: Schematic illustration of surface chart ¢ and reparametrization o.

We will show that reparametrizations of regular charts are regular. To prove this, first we need to recall the
chain rule for multivariable functions.

Remark 4.60: Chain rule

Suppose that U, U CR? are open sets,
f:U—>R
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is smooth, and
o:U—->U

is a diffeomorphism. Define f : U — R® by composition:

fi=f-0.
Explicitly, the above means i _
f@,v) = f(®@,v)), Vv@v)eU.
We denote the components of f, f and ® by
F=ULRAP), f=ULFA ), o=@ e%).
The Jacobians are
~ qul fvl fa £y ol ol
If=\ 5 £\ =\ £ Jcbz( ; 2)
i i 8 P

The chain rule states that )
Jf@,v) = Jf(@@@,v)) Jo(@,v).

By expanding the above identity we obtain the chain rule in vectorial form
fal@, ) = f(@(@ D)@Y ) + £,(@(@ V)@, )

As done previously, we introduce compact notation for reparametrizations and chain rule. Specifically,
we denote the components of the diffeomorphism ® by

Ol o~ (@)~ u(i, )

D2~ (@, 9) - (i, D)

Accordingly, the Jacobian of ® is denoted as:

. . Ju du
ol ! priliee
Jo = ( o o ) - | &
u v — —
ou Jv
Hence, the chain rule in vectorial form reads
= au av
U — 4+ -
fi= fom 4 h 2
~ du av
U — 4+ -
fV fu a"} f'V 817
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We will now prove that the reparametrization of a regular chart is regular.
Proposition 4.61
Suppose that U,U C R? are open sets and
c:U—->R
is a regular chart. Assume given a diffeomorphism
®:U->U.
The reparametrization & : U — R? defined by

6=0°®

is a regular chart.

Proof
Since o is a regular chart we have that ¢, and o, are linearly independent. Hence
0,%x0,#0.

To see that o is regular it is sufficient to prove that

0;x05 #0. (4.1)
By chain rule we have
6'~—0'a—u+0'a—v
Y Mon T ou
0;=0 8_u+ d
Yo av Vo

By the properties of vector product we get

- . ( ou 8v> ( ou 8\/)
0;X05=\0y— t0, < |X|\0y < +0,—=

il il Y ov oV
_a_ua_u(o_ xa)+a—u@(a xX0y)
ouav - W oumev - * Y
a_va_u(o_ xa)+a—v@(0' xXa0,)
onaov - " Y onev VY
(o) g

ouav ouaov) 4V
u  ou

= det gg 3}’: (0, x0,)
ou A

=det J® (o, x0,) .
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Since @ is a diffeomorphism, we have that
det JO # 0,

from which we conclude (4.1).

4.6 Transition maps

Consider the situation in which two regular charts have overlapping image.
It is natural to ask wether these maps are reparametrizations of each other on the overlapping region, see
Figure 4.14. If such reparametrization exists, it is called a transition map.

S

Figure 4.14: If the two regular charts o and 6 have overlapping image, then they are reparametrization of each
other, through a transition map .

Definition 4.62: Transition map
Let & be a regular surface and

c:U-»oU)CS, 6:U—-60)CS

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry

be regular charts. Assume that the images of o and 6 overlap, that is,
I:=0(U)n6(0) = 0.
The set I is open in &, since it is intersection of open sets. Define the sets
V= W(DcU, V:=6'0)cCU,
The sets V and V are open and by construction
c(V)=6(V)=1.

Therefore they are well defined the restrictions

oly: VoI, oly: Vo1,
which are homeomorphisms. The homeomorphism

P: VoV, ®:=0los

is called a transition map from o to .

The theorem below states that transition maps between regular charts are diffeomorphisms. The proof is
slightly technical and is based on the Implicit Function Theorem. We decide to omit it. The interested reader

can find a proof at Page 117 of [6].

Theorem 4.63

Let & be a regular surface. The transition maps between regular charts are diffeomorphisms.

We can now use Theorem 4.63 to show that transition maps are reparametrizations.
Proposition 4.64
Let & be a regular surface and
c:U->oU)CS, 6:U—-60)CS
be regular charts. Assume that the images of o and 6 overlap, that is,
o(U)n 5'([7) =Q.

Then there exist open sets
Vvcu, VcuU,

and a diffeomorphism

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 201

such that 5'|‘7 is a reparametrization of oy, that is,

oly =(oly) - @.

Proof

Define -
I:=0(U)noU) + 9.

Note that this set is open in &, being intersection of open sets. Set
Vi=eI(), V:=6D).

The sets V and V are open, since o and & are homeomorphisms, and hence are continuous. By construc-
tion we have
oV)=a6(V)=1I.

Therefore they are well defined the restrictions
oly: VoI, oly: VoI,
which are homeomorphisms. Consider the transition map
d: VoV, ®:=c¢loG.
By Theorem 4.63 we know that ® is a diffeomorphism. Hence
oly = (oly) - @,

with @ diffeomorphism, showing that 6;; is a reparametrization of oly.

Important

Proposition 4.64 allows us to define properties of surfaces using charts, as long as we check that the
property in question does not depend on reparametrization.

4.7 Functions between surfaces

We would like to define a concept of smooth function
[ 81— 8,

where &7 and &, are regular surfaces. So far we know what a smooth function from R” into R™ is. The idea
is to use surface charts to define such f.
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Definition 4.65
Let &} and &, be regular surfaces and let

fi 8= &
be a map. We say that:

« f is smooth at p € &) if there exist charts o, : U; — &) fori = 1,2 such that

peoi(U), f(p)e€ayly)

and
(63 e foay): Uy > Uy

is smooth.

« f is smooth if it is smooth for each p € §;.

+ f is a diffeomorphism if f is smooth and invertible, with smooth inverse.

S& G\:\.(\Js—\ (JL)

=5

X 7y , T
N )
" ofor U,
—_— R

Figure 4.15: Sketch function f smooth at p between the surfaces &} and &.
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Remark 4.66

« Definition 4.65 makes sense because 65! exists.

The map 6, ¢ f & is only defined for x € U; such that

flo1(x) € a2(Us).

The function a5 ' f °6; maps from R? into R?, therefore differentiability is intended in the classical
sense.

« Definition 4.65 does not depend on the choice of charts ¢y and o,
Indeed, suppose that g; : U; — &, are charts such that

pe€ 610, f(p) € 65(0,).

In particular we have
oi(U) n6(U) # .

As &7 and &, are regular surfaces, by Theorem 4.63 there exist open sets

and transition maps

which are diffeomorphisms and satisfy

Hence

Gy o fob1 =65 °(03°05") felo°07") 5
= (63 °03) e (03" ° fo01) (07" °5y)
= (I)El 0(0'51 ofoO'l)oCI)l_l .

Since @; 1 and 0'51 o f o g are smooth, we conclude that

G5 o fody

is smooth. Hence Definition 4.65 does not depend on the choice of charts.
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Proposition 4.67

Iff: & - S and g: & — &3 are smooth maps (resp. diffeomorphisms) between surfaces, then the
composition

(g f): & — 83

is smooth (resp. a diffeomorphisms).

Proof

Fix p € &7 and choose charts
o;: U= &

such that
peoi(U), f(p)eayly), g(f(p)e€asUs).

Since f and g are smooth we have that the maps
-1 -1
0y °fe01, 03 °geoay,

are smooth. Hence
03 o(gofleo; =(03" 0 gooy)o(oy' o fooy)

is smooth, ending the proof.

Definition 4.68

Let &; and &5 be regular surfaces. We say that §; and & are diffeomorphic if there exists f: & = &,
diffeomorphism.

The key ideas around diffeomorphisms are:

+ Two diffeomorphic surfaces are essentially the same. Indeed, it is immediate to show that being diffeo-
morphic is an equivalence relation on the set of regular surfaces.

« Two diffeomorphic surfaces have essentially the same charts, as shown in the next proposition.
Proposition 4.69
Let & and & be regular surfacesand f: & — S be a diffeomorphism. If 6 : U — & is a regular chart

for & at p, then B
6 :=feoc:U—>&

is a regular chart for § at f(p).
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Proof

Leto,: U, — Sbea regular chart for S at f(p). By definition of diffeomorphism between surfaces, the
map
®:=05lofoc:U—U

is a diffeomorphism. Therfore
(f o 0)(w,v) = 03 (2(u, v))

with @ diffeomorphism, meaning that f .o is a reparametrization of 6. Since &, is regular, by Proposition
4.61 we deduce that f o o is regular.

We conclude with the definition of local diffeomorphism between surfaces.
Definition 4.70: Local diffeomorphism

Let &7 and &, be regular surfaces. A smooth map f: & — & is called a local diffeomorphism if for
each point p € & there exists an open set V C & such that f(V) C &, is open and

[V = f)

is a diffeomorphism between surfaces.

The above definition is well posed since open subsets of surfaces are themselves surfaces.

4.8 Tangent space

We have seen that tangent vectors to regular curves allow to define the Frenet Frame, curvature and torsion.
Eventually, these quantities are sufficient to characterize a curve. The anolgue concept of tangent vector for
surfaces is called the tangent space. To avoid clumsy terminology, we make the following assumption.

Assumption 4.71

From now on, all the surfaces will be regular and all the charts will be regular.

Definition 4.72: Tangent vectors and tangent space

Let § be a surface and p € §. A tangent vector to § at p is any vector v € R® such that
v =y(0),
wherey : (—¢,¢) — R3 is a smooth curve such that
y(—ee) S, y(0)=p,
where ¢ > 0. The tangent space of § at p is the set
T,8 :={ve R3 : v tangent vector of & at p}.
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TS

Figure 4.16: Tangent space T,§ of surface & at the point p. A tangent vector v coincides with y(0) for some
Y : (—¢,¢) = & such that y(0) = p.
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Let us start with the most basic example: We want to compute the tangent space to an open set in R%.
Example 4.73

Let U C R? be open and p € U. Then
ToU = R%.

Proof. Let v € TpU. By definition there exists a smooth curve
y: (-e,e) >U

such that y(0) = p and y(0) = v. Since U C R, it follows that y is a plane curve, so that
v =y(0) e R%.

Conversely, let v € R%. Since p € U and U is open, there exists ¢ > 0 such that B,(p) C U.
Define the curve
y: (—e,e) >R}, y@) :=p+tv.

By construction
y(-ee) CB(p) U, y(0)=p, y0)=v,
showing that v € T,U.

In the above example we have seen that T,U = R?. This property holds in general for T, S with & regular
surface. Before proving this fact, we need a lemma.

Lemma 4.74

Let & be regularand p € §. Leto : U — o(U) C § be a regular chart at p, with

o (g, ) =P

We have:
1. Supposey : (—¢,¢) — R? is a smooth curve such that

y(=e,e)CoU), y(0)=p.
Then there exist smooth functions
u,v: (—¢¢) >R

such that
y®) =o(u®),v@®)), Vte(-¢e),

and

u(0) =uy, v(0)=1p.
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2. Conversely, assume u,v : (—¢,¢) = R are smooth functions such that
u(0) =uy, v(0)=1.

Then
Y(®) :=ou(®),v())

is a smooth curve such that

y(—e,e) S, y(0)=p.

Proof

Denote the coordinates of o by

o(u,v) = (f(u,v), gu,v), h(u,v)).

fu fo
do=| g & |-
hy hy
Since o is regular, by definition do has rank-2 at (1, vy). This means that at least one of the 3 minors
(fu fv) <fu fv) (gu gv)'
gu g’V ’ hu hV ’ hu h’V

is invertible. WLOG assume the first is invertible (the proof in case the other two are invertible is similar.)
Define the map

The differential of o is

F: UCR?—-R?, F(uv)=(f(uv),guv)).

or=( v

which is invertible at (uy, v) by assumption. Hence, by the Inverse Function Theorem, there exist

We have

« W CU C R? open set with (1, ) € W,
« V C R? open set with F(uy,v,) €V,

such that
F: W->YV

is a diffeomorphism. Hence
Fl:v-w

is smooth. Since y(—¢,¢) C o(U), it is well defined the composition

F_loy: (—e,e) > WCU.
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Moreover such composition is smooth, being F~! and y smooth. Therefore

(F~1eop)(t) = (u(®), v(t)) (4.2)

with u, v smooth. As y(0) = p, by definition of F we have

((0),v(0)) = (F~ o ¥)(0) = F~'(p) = (g, w),

showing that
u(0) =uy, v(0)=1v,.

Moreover, applying o to both sides of (4.2) yields
o(u(®),v(t)) = a(F~1 e ))(t) =y (1),

as we wanted to show.
The converse statement is trivial.

We are now ready to characterize T,& when & is a regular surface.
Theorem 4.75

Let & be a (regular) surface and p € §. Let o : U — R> be a chart at p. Denote by (u,v,) € U a point
such that

o (g, vp) =P

Then
T,$ = spanfo,,0,} :={lo, + po, : A p€R},

where 0, and g, are evaluated at (ug, vy). In particular

— R2
T,S = R?.

Proof

Leto : U — o(U) C § be a chart at p. If we show that
TS = spanf{o,,0,}

then we deduce
TS =R?,

since 0, and 0, are linearly independent.
Step 1. Suppose v € T, §. By definition there exists a smooth curvey : (—¢,¢) —> & such that

y©=p, y0)=v.
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By continuity, we can take ¢ small enough so that

y(—¢,¢) Co(U).

By Lemma 4.74 there exist smooth functions u,v : (—¢,¢) = R such that

Y@ =o(u@),v®)), Vte(-¢e),
and
u(0) =uy, v(0)=1v,.

Therefore, by chain rule,
y(®) = o, (u®), v(®)) ut) + o, (u(t), v(t)) v(t) .

Evaluating the above at t = 0 yields

v =y(0)
= 0,(u(0),v(0)) 2(0) + &, (u(0), v(0)) ¥(0)
= 0, (uy, ) w(0) + 0, (ty, vp) v(0),
which shows
vE SPan{O'u(uo, VO)> Gv(uO: VO)} .

Step 2. Suppose that
A Span{au(uo’ VO)» O'V(UO, VO)} .

Then there exist A, y € R such that
v = Aoy (ug, vo) + pory,(up, vp) -
Define the curve
Y@ :=o(uy+ At,vy + pt), te(—¢e).

We have
y(0) = o(up,vp) = p.

Therefore, for ¢ sufficiently small, we have

yY(—¢,¢) Co(U).
By chain rule
Y@ =o,(uy + At, vy + pt)A + o, (ug + At, vy + ut)pt,

and therefore
y(0) = 0,(ug, vo)A + o, (up, v = v.

This proves that v € T, &, ending the proof.
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Therefore T, 8 is always two-dimensional. This justifies the following definition.
Definition 4.76: Tangent plane
Let & be a regular surface and p € &. The set

T,8

is called the tangent plane to § at p.

Remark 4.77
By definition T, is a vector subspace of R3. As such, it holds that
0eT,S.
To see this, take the curve y(¢) = p. Theny(0) = p and y(0) = 0, showing that 0 € T,,§".

Therefore T, & is a plane through the origin, no matter where the point p € & is located. When we draw
the tangent plane as a plane resting on the surface, see Figure 4.16, we are not drawing T, &, but rather
the plane

p+1,8,

which is the affine tangent plane through p € §.

It is possible to give a cartesian equation for the tangent plane
TS

and for the affine tangent plane
p+1,$.

Proposition 4.78: Equation of tangent plane
Let & be a regular surface and p € 8. Let o be a regular chart at p, with

o (up, vp) = p = (%0, Y0, 20) -

Let
n :=0,(uy, %) x 0, (up, W) -

The equation of the tangent plane T, & is given by
nx+ny+n3z=0, V(x,y,2)¢€ R3,
where n = (n;, ny,n3). The equation of the affine tangent plane p + T, S is given by

n;(x —xp) +my(y —xp) +n3(z —29) =0, V(x,y,2) €R>.
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Proof
By Theorem 4.75 we know that
T,§ = span{o,(ug, vo), 6 (g, )} -

By the properties of cross product, the vector n is orthogonal to both ¢,(uy, vy) and a,,(uy, vy). Therefore
it is orthogonal to T,,§. The equation for T,§ is then

(x,9,2) n=0,V(x,y,2) € R3.
In particular, the equation for the affine tangent plane p + T,,§ is
(x,y,2) n=k, V(x,y,2)€ R3,

for some k € R. To compute k, it is sufficient to evaluate the above equation at p, since p belongs to
p +TpS. We obtain
k=p-n.

Hence the equation for p + T, is
(x— %0, Y= y0.2—2) n=0, VY(x,y,z)€R3,

ending the proof.

Example 4.79
Consider the surface & defined by the chart
o(u,v) := (\/1 —vcos(u),v1 — vsin(u), v) .

We want to compute the equation for the tangent plane T,§, and for the affine tangent plane p + 1,8’
First, we need to check that o is regular. We have

o, = (—\/1 —vsin(u),v1 — v cos(u), 0)
o, = <%(1 - v)_l/2 cos(u), %(l - v)_l/2 sin(u), 1>
As the last component of 6, is 0 and the last component of 6,, is 1, we conclude that 6, and 6,, are linearly

independent. Thus o is regular.
Suppose p € § is such that

o (up,v) = p

for some (14, v) € R?. By Theorem 4.75 we have

T,§ = span{o,(ug, Vo), o, (t, )} -
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To find the equation of T,§ we compute:

i i k
O, X0, = —vJ1 —vsin(u) V1 —vcos(u) 0
%(1 — )" V/2 cos(u) %(l —v) Y25in(w) 1

= (\/ 1 —vcos(u),v1 — vsin(u), —%)

For
T
Uy, vp) ={—,0
(9, vo) <4

2
’_50) 3
2

23 )

2° 2" 2

we have

|5

PZU@m%)=(

and therefore

= (@ <00 w) =
The equation for T, & is therefore
(x,y,2) n=0, V(x,y,2z)€ R3.

The above reads

Qx+£y—lz=0.
2 2 2
The equation for p + 7,8 is instead
—2x+ﬂy—lz:k,
2 2 2
for some k € R. To compute k, note that p € p + T,,§, and therefore
ERENEE R -
2 2 2 2
The equation for p + 1,8 is then
—2x+ﬁy—lz:1
2 2 2

Remark 4.80: Tangent space and derivations

The definition of tangent plane depends on the fact that & is contained in R®. This is a serious drawback
in many applications, as the surface & does not necessarily need to be Euclidean. There is a way to get
rid of such dependence, and give an intrinsic definition of tangent plane, depending only on the point p
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and the surface §.
The basic idea is as follows: If U C R? is open and p € U, then TyU = R?. We can associate to any point
v € TpU a directional derivative acting on smooth functions f : U - R:

a‘ 0
v=m,vw)> —| =v —
vlip

oy 2
8x1 2

P 8x2

p

The above directional derivative is called a derivation.
The point is that derivations do not need to be defined through vectors, but can be defined as follows: D
is a derivation if

« D: C*(U) — Ris a linear operator, where C*(U) is the set of smooth functions f: U — R,
« D satisfies the Leibnitz rule

D(fg) = f(p)D(g) + g(P)D(f). Vf.geC™(U).
The tangent plane at p can then be defined as
T,U = {D derivation at p}.

Therefore
LU C (€ U)),

the dual space of smooth functions.
It is possible to do such construction directly on &, by introducing the concepts of:

« germ of a function
« algebra of derivations, acting on germs

An in depth discussion can be found in Chapter 3.4 of [1].

4.9 Differential of smooth functions

Let f: U — V with U,V C R? open. Suppose f is smooth. The differential of f at p € U is a linear map
dfp : R? » R?.

We have seen that
ToU = R?

and therefore we can interpret d f,, as a map between tangent planes:

dfp: R? - R?.
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Similarly, if f: & — & is a smooth map between surfaces, we can define its differential at p € & as a linear
map _
dfp: TpS = Typ)S'-

To define such map, we need the following lemma.

Lemma 4.81

Let § and &§ be regular surfacesand f: & — & a smooth map. For v € T, lety : (—¢,¢) > S be such
that

r(=p, y0)=v.
Define -
Y i=fcy: (—e¢e)—>S.

Then y is a smooth curve into R? and

\NIETf(P)cS)N, v ::);/(0).

Proof

Note that

Yy=icfeovy,
withi: & — R3 inclusion map. Since i, f,y are smooth, we conclude thaty : (—¢,¢) — R3 is smooth.
Moreover

r(0) = f(¥(0)) = f(p).
and therefore
v :=7(0) € TS,
by definition of tangent space.

Definition 4.82: Differential of smooth function

Let & and & be regular surfaces and f: & — & a smooth map. The differential d fp of f at p is defined
as the map _
dfp : TpoS’ — Tf(p)oS’, dfp(v) =V,

where Vv is as in Lemma 4.81.

We now show that d f}, is well-defined and linear. Moreover we provide a representation of d f}, as a matrix.
Proposition 4.83
Let & and & be regular surfacesand f: § — § a smooth map. Denote the differential of f by
dfp: TS = Tf(p)g'
We have:
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1. df,(v) does not depend on the choice of y.
2. dfp is linear, that is,
dfp(Av + pw) = Ad f,(v) + pd fp(w)

for all v,wETPoS’ and A, p € R.
3. Let ~
c:U—~>¢8, 0:U—>J¢,

be regular charts at p and f(p), respectively. Denote by

(u,v) = (a(u,v), f(u,v))

the components of the smooth map
Y =G 'ofoq:U—U.

In particular
o(a(u,v), p(u,v)) = flo(w,v)), V(u,v)eU.

The matrix of the linear map d f}, with respect to the basis
{ou,0,} on T,8, {63065} on Tf(p)oSN’,

is given by the Jacobian of the map ¥, that is,

w0 5)

For a proof, see the discussion at page 87 of [6].

Proposition 4.84

The following hold:
1. If & is a regular surface and p € &, the differential at p of the identity map
I:8§->8, Ix):=x,

is the identity map
I Tp(8) = Tp($8), 1) :=v.

2. If §1, & and &5 are regular surfaces and
f:81 8, g:8H—>J5,

are smooth maps, then
dp(g° f)=dpp)godpf,
forall p € T, 8.
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3. If &1, &, are regular surfaces and
fi 818,

is a diffeomorphism, then the differential
dp + TpS1 = Ty(p)S2

is invertible for all p € &;.

For a proof see Proposition 4.4.5 in [6]. The above proposition says that the differential of diffeomorphism is
invertible. The converse statement is true locally.

Theorem 4.85

Let &} and &, be regular surfaces. Suppose that
f:81 =8
is smooth. They are equivalent:

1. fis alocal diffeomorphism.
2. The differential d, f : T, &1 — Ty(p)S2 is invertible for all p € S;.

The proof is based on the Inverse Function Theorem, see Proposition 4.4.6 in [6].

4.10 Examples of Surfaces

4.10.1 Level surfaces
We have already seen level surfaces. Let us recall the defintion.
Definition 4.86: Level surface

Let V C R? be an open set and f : V — R be smooth. The level surface associated with f is the set

Sy = FY0) ={(x,y,2) €V : f(x,y,2z) = 0}.

The following Theorem gives a sufficient condition for 8 to be a regular surface.
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Theorem 4.87
Let V C R? be an open set and f : V — R be smooth. Suppose that
Vi, y,2) =0, VY(x,y,2)€V.

Then &' is a regular surface.

Let us give a characterization of the tangent plane to §.
Proposition 4.88
Let V C R® be an open set and f : V — R be smooth. Suppose that
Vi(x,y,2) #0, V(x,y,2)€V.
Then Vf(p) is orthogonal to T, 8. In particular, the equation of T,,8f is given by
o f(P)x+0,f(P)y + 0, f(p)z=0, V(x,y.2) €R>.
The equation for p + 1,8 is given by

9 f(P)(x = x0) + 9, fF(P)(y = ) + 9, f(P)(z — 20) = 0,V (x, y,2) € R,

where p = (xg, Yo, 20)-

Proof

Let v € T, 8. By definition there exists a smooth curve
Y: (—¢¢6)— Sy C R3

such that
y(=p, y0O)=v.
Since y(t) € Sy, we have that
fy@®) =0, Vte(-¢e).

By chain rule we get
VIiy@®) -yt) =0, Vte(-¢e).
Evaluating the above at t = 0 yields
0=Vf({y(0) y()=Vf(p)-v,

showing that v is orthogonal to V f(p). Since v is arbitrary, we conclude that V f(p) is orthogonal to T, S ;.
In particular, the equation for T, 8y is

Vi) (x.y.2) =0, V(x,y,2) €R’.
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Therefore the equation for p + T, S is given by

Vi) - (x,y.2) =k, Y(xy,2) e R3,

for some k € R. Since p € p + T,&, we can substitute

(x,¥,2) = (%0, Y0, 20) = P

in the above equation to obtain
k =V f(p) - (xo, Yo, 20) -
Hence the equation for p + T, is

VIp)  (x—x0,y— Y 2—2) =0, V(x,y,2)€R>.

4.10.2 Quadrics

Quadrics are level surfaces
S¢= {(x,y,2) € R® : f(x,y,2) = 0},

where
f(x,v,2) =a;x% + apy? + azz® + 2a,xy + 2asxz + 2agyz+
+bix+byy+byz+c,
for some coeflicients a;, b;,c € R. Let
a; dy a6
A=\ a4 ay as |€ R3*3 s
dg as das

and

x = (x,y, 2T, b= (bl,bz,b3)T-
Then f can be represented by the quadratic form
f(x) =x'Ax+b-x+c.
The expression f = 0 is called a quadric equation.

As stated in the following theorem, there are 14 quadrics in total. Out of these:

» g are interesting surfaces,
« 3 are planes,

« 11is aline,

+ 1is a point.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry

Page 220

Theorem 4.89

Suppose & is a level surface defined by a quadric equation. Then, up to rigid motions, & can be described

by one of the following equations:

Elhpsmd — + y—z +
p?

q

|N
L\JN

=1.

-

2
2. Hyperboloid of one sheet: — + y—2
P q

2
2 y 2

3. Hyperboloid of two sheets: x_2 — ===

r° q

x? yz
4. Elliptic Paraboloid: = + = =z
P ¢

x? yz
5. Hyperbolic Paraboloid: — — — =z
" q

x? 222
6. Quadric Cone: — + =
P2 2

=0

»QN|"<

7. Elliptic Cylinder: p_ + y—z =1

q

. . X2 Y
8. Hyperbolic Cylinder: — — =
q

p? -

2
9. Parabolic Cylinder: x_2 =y
P

10. Plane: x =0

2 = p?

11. Two parallel planes: x

zyz

12. Two intersecting planes: L _L =

P ¢

2 yz
13. Straight line: =+ = 0
p q
2 2
14. Single point: x_z + Yy +

| N

2
2 =0

\S]

r

B

The proof of Theorem 4.89 follows by diagonalizing the symmetric matrix A, and by studying the eigenvalues,
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see Theorem 5.5.2 in [6].
Example 4.90

The sphere is described by
S = {(x,y,Z) € ]R3 . x2 —|—y2 +Zz — 1}

This is an ellipsoid with
p=q=r= 1.

In particular we can write the sphere as the quadric equation:

100
xX[ 010 |x=1.
0 0 1

Example 4.91

Consider the level surface
S ={(x,y,2) €R* : f(x,y,2) =0}
with
flx,y,2) = x> +2y* — 4z + 2xy + yz —6xz+1=0.

Therefore § is a quadric. The matrix associated to f is

1 1 -3
A= 1 2 1/2
-3 1/2 —4

Diagonalizing the matrix A we obtain A = PDP!, with P matrix of eigenvectors and

=551 0 0
D= 0 155 0 .
0 0 296

Therefore, up to changing basis via the matrix P, S can be described by the quadric equation
5.51%% — 1.557% — 2.963% =1,

showing that S is a Hyperboloid of two sheets.

4.10.3 Ruled surfaces

A ruled surface is a surface obtained as union of straight lines, called the rulings of the surface. By using
curves, ruled surfaces can be defined in the following way.
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Definition 4.92: Ruled surface

Lety: (a,b) — R® be a smooth curve and a: (a,b) — R a vector, such that y(t) and a(t) are linearly
independent for all ¢ € (a,b). A ruled surface is a surface with chart

o(u,v) =y + va(u).
We say that:

+ v is the base curve
« The lines v — va(u) are the rulings

Proposition 4.93

A ruled surface § is regular if v is sufficiently small.

Proof

A chart for & is
o, =y +va(w), o,=au),

with y and a linerly independent. Thus y(u) + va(u) and a are linearly independent for v sufficiently
small.

The same base curve can yield multiple ruled surfaces. For example, if y is a circle, we can obtain both the
unit cylinder and the Mébius band.

Example 4.94: Unit Cylinder

As seen in Example 4.49, the cylinder is a surface with atlas & = {61,0,}, where 61 and &, are suitable
restriction of
o(u,v) = (cos(u),cos(u),v), (u,v)€[0,2r)xR.

We have
o(u,v) =y +va(u),
with
y(w) := (cos(u),cos(u),0), a=1(0,0,1).

Hence the unit cylinder is a ruled surface, see Figure 4.17.

Example 4.95: MGobius band

The Mobius band is a ruled surface with chart

o=y +va(u), uec(0,21), ve (—% %) ,
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Figure 4.17: Unit cylinder is a ruled surface with base curve y and rulings given by vertical lines.

where

y(@) = (cos(u), sin(u), 0)

o= (2 oo ()

is a vector which does a full rotation while going around the unit circle y. This is shown in Figure 4.18.

is the unit circle and

4.10.4 Surfaces of Revolution

Surfaces of revolution are obtained by rotating a curve about the z-axis.
Definition 4.96: Surface of revolution

Lety: (a,b) — R3 be a smooth curve in the (x, z)-plane, that is,

Yy = (f(w),0, g(w)).

Suppose that f > 0. The surface obtained by rotating y about the z-axis is called surface of revolution.
A chart for & is given by

o(u,v) := (f(u) cos(v), f(u) sin(v), g(w)), u€ (a,b),ve|0,2r).
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U= ¥ olw)

a(u)

MBBIVS STRIP

Figure 4.18: The Mdbius band is a ruled surface with base curve y and rulings given by rotating vertical lines.

Proposition 4.97

A surface of revolution is regular if and only if y is regular.

Proof
We have
o, = ( f(u) cos(v), f(u) sin(v), g(u)) ,
&, = (—f() sin(v), f(u) cos(v),0) .
Therefore _ ‘
0, %0, = (fi cos(v), - fg sin(v), )
and

2 2L . 2
o < ol” = 2 (f* + &%) = fAIrI” .
Recall that f > 0 by definition, so that 2 # 0. Therefore 6, and o, are linearly independent if and only
if'y is regular.
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Example 4.98: Catenoid

The catenoid is the surface of revolution obtained by rotating the catenary about the z-axis, see Figure 4.19.
Recall that the catenary function is defined by

f(u) = cosh(u).
Therefore the catenoid is obtained by rotating
y(u) = (cosh(u),0,u) .
A chart for the catenoid is given by
o(u,v) = (cosh(u) cos(v), cosh(u) sin(v), u),
where u € R and v € [0, 277). Note that f > 0 and

y = (sinh(w),0,1), [yJ* = 1+ sinh(u)? > 1.

Therefore y is regular. By Proposition 4.97 we conclude that the catenoid is a regular surface.

/\E

Figure 4.19: The Catenoid is the surface of revolution obtained by rotating the catenary about the z-axis.
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4.11 First fundamental form

In this section we introduce the first fundamental form of a surface. This will allow us to compute:

« Inner product between tangent vectors
« Angle between tangent vectors
« Area of surface regions

Moreover we can compute

+ Length of curves on a surface
» Angle between curves on a surface

4.11.1 Length on surfaces

Let & be a surface and consider two points p,q € 8. The euclidean distance between p and q is

lp—dql .

However this measures the length of the straight segment which connects p to q. We are interested in
measuring the distance on &. A way to measure such distance is the following: Suppose

y: (o)) > S

is a smooth curve such that
r)=p, yt)=q.
The distance between p and q on & is the length ofy, i.e.,

41
L Wl dr.

0

Question 4.99

How do we compute the above integral?

Since y(t) € &, by definition we have
y@) €TSS, x:=y().

Therefore, computing [y(¢)| is equivalent to computing the length of tangent vectors. This motivates the
definition of first fundamental form.

Definition 4.100: First fundamental form

Let & be a regular surface and p € §. The first fundamental form of § at p is the bilinear symmetric
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map
I TP<§’><TP<~S’ — R, Ip(v,w) I=V-W.

Three observations:

« The first fundamental form of & at p is the map obtained by restricting the scalar product of R® to I,S.

« Note that
(v, v) = [vI2,

so that I, can be used to compute the length of tangent vectors.

« The definition of I, does not depend on a chosen chart.

To use the first fundamental form in practice, we need to express Ip in terms of local charts. To this end, we
first define the coordinates functions du and dv on TPS.

Definition 4.101: Coordinate functions on tangent plane
Leto : U — R? be a regular chart of §. For each p € 6(U) we have
T,$ = span{o,, 0.},
where 6, and g, are evaluated at the point (1, vy) € U such that
o (up, vp) = p.

Therefore, for each v € Tpé’ , there exist A, u € R such that

v=»Ao,+ lo,.
The coordinate functions on T,§ are the linear maps

du,dv: Ty8 > R, du(v) :=21, dv(v) :=p.

Definition 4.102: First fundamental form of a chart
Leto : U — R be a regular chart of §. Define the functions
E.F,.G: U —->R

by setting
EF:=0,-0,, F:=0,-0,, G:=0,-0,.

Let p € 6(U) and denote by (uy,vy) € U the point such that

o (g, ) =P
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The first fundamental form of ¢ at p is the quadratic form
9"‘1 : Tpéj - R

defined by
F1(v) := Edu?(Vv) + 2F du(v) dv(v) + Gdv?(v), (4.3)

forall v e Tpé’ , where E, F,G are evaluated at (u, vp).

We usually omit the dependence on v in (4.3), and write
F, = Edu? + 2Fdudv + Gdv®.

The quadratic form & is related to I in the following way.
Proposition 4.103

Leto : U — R® be a regular chart of &, and p € a(U). Then

L (v, w) = (du(v), dv(v)) ( C o ) (du(w), dv(w))T |

for all v,w € T, & In particular, & is the quadratic form associated to the symmetric bilinear form I,
that is,
Fi(v) =Ip(v,v), VveT,S.

Proof

By Theorem 4.75 we have
T,$ = span{o,,0,}.

Therefore, for v,w € Tpé’ , there exist A{, Ay, yi1, o € R such that

V:/110'u+/110",, Wzﬂzo'u‘F/le'V.

We have
Lv,w)=v-w
= hdyoy o, + (A + py)oy, -0y + o, -0,
= Edu(v)du(w) + F (du(v) dv(w) + du(w)dv(v))
+ Gdv(v)dv(w)
— (du(v), dv(v)) ( e ) (du(w), dv(w))T .
The fact that

L, V) = F1(v)
follows from the first part of the statement and definition of F.
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Remark 4.104: Linear algebra interpretation

Using linear algebra, Proposition 4.103 has a clear interpretation, as follows. I, is a symmetric bilinear
form on the vector space T,,&'. Fixing the basis {6, 0.} for T, &', we can represent I, via the matrix

M= ( Ip(au,au) IP(O'u,O'V) )
Ip(o'v’o'u) IP(O'V,O'V)

0,0, 0,0,
6,0, 0,0,

(Fa)

where we used thato,, -0, =0, -0,

Notation

With a little abuse of notation, we also denote by % the 2 x 2 matrix
E F
o o —

Remark 4.105: First fundamental form and reparametrizations

The first fundamental form I, depends only on the surface & and the point p. Instead the representation
of I,
F, = Edu® + 2F dudv + G dv?

depends on the choice of chart o : U — R>. Indeed suppose that & : U — R is a reparametrization of ,
that is,
6=0°0,

where @ : U — U is a diffeomorphism. Recall that we denote the components ®' and ®* of ® by
(@,9) = u(@,v), (@)~ v(@9v),

respectively. The Jacobian of ® is then

ou ou
o={ % &
ou ov

Denote the first fundamental form of 6 by
F, = Edi? + 2F dudv + G dv? .
The linear maps du, dv and du, dv are related by

du=ai+% a5, dv=Ldi+dv (4.4)

ou ov ou ov
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Moreover the matrices of #; and 9;71 are related by
EF\Y . rt(EF
(7 &)-0or(F ) w

The proof of the above statements follows by basic linear algebra: The pairs {o,,0,} and
{0;,0} are bases for the vector space T,§. The change of basis matrix is given exactly by
J®. Therefore formulas (4.4) and (4.5) are consequence of change of basis results for linear
maps and bilinear forms, respectively.

Let us compute the first fundamental form of a plane and of a cylinder.
Example 4.106: Plane
Let a, p, q € R®. Suppose that p and q are orthonormal vectors, that is,
Ipl=lql =1, p-q=0.

Consider the plane with chart

o(u,v) =a+up+vq, (uv)eR?.
Prove that the first fundamental form of ¢ is

F = du? +dv?

We have

and therefore

2
E:au'au:||P|| =1
F=0y-0,=p-q=0

2
Gzo-v'o-v:"q" =1

Then the first fundamental form is

F, = Edu? + 2F dudv + Gdv? = du® + dv?.

Two remarks concerning Example 4.106 :

« The above example should not be surprising, since distances on a plane are the same as Euclidean
distances, given that straight segments are contained in the plane.
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« If we drop the assumption of p and q being orthonormal, then
F1=Ipl” du* +p-qdudv+|qI” dv*.
Again, this is not surprising, due to Remark 4.105.
Example 4.107: Unit cylinder
Consider the unit cylinder with chart
o(u,v) = (cos(u), sin(u),v), (u,v)€ (0,27)xR.
Prove that the first fundamental form of o is
Fy = du?® +dv?.

We have
o, = (—sin(u), cos(u),0), o, =1(0,0,1),
and therefore
EF=0,-0,=1
F=0,-0,=0

G=0,0,=1

Then the first fundamental form is

F, = Edu® + 2Fdudv + Gdv? = du® + dv?.

Remark 4.108

We have seen that a plane and the unit cylinder have the same first fundamental form

Fi = du® +dv?.

Therefore lengths are the same on the two surfaces.

4.11.2 Length of curves

Let us show how the first fundamental form allows to compute the length of curves with values on surfaces.
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Proposition 4.109
Let & be a regular surface with charto : U — R3. Suppose
y: (to.t)) >oU)CS

is a smooth curve. Then
Y(®) = o(u®),v(®)),

for some smooth functions u,v : (t),t;) » R and

4 f
J ly@®)| dt = J JEi2 + 2Fuv + Gv2 dt
tO 1

0

where #, v are computed at ¢, and E, F, G are computed at (u(t), v(t)).

Proof

Since y takes values into o(U), by Lemma 4.74 there exist smooth functions u, v such that

Y(®) =ou®),v(®), vielh).

By chain rule we have
Y (@) = u()o, (ut), v(1)) + v(t)a, (u(®), v(t)) .

The above means that the coefficients of y with respect to the basis {,,0,} are @, v, i.e.,
du(dg)=u, dv(y)=.
By Proposition 4.103 we get
N2
ly@®OI" =y -y
= L(y.y)
= Edu(y)? + 2F du(y)dv(y) + G dv(y)?
= Eu? + 2F uv + GV,

concluding the proof.

Example 4.110: Cone

Consider the cone with chart
o(u,v) = (ucos(v),usin(v),u),
where u > 0 and v € [0, 27].

1. Prove that the first fundamental form of o is

F = 2du® +u? dv?.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 233

2. Lety(t) :=o(t,t). Show that
T T
J ly@®)| dt = J 2+t2dt.
/2 /2

We have
o, = (cos(v),sin(v),1), @&, = (—usin(v),ucos(v),0).

Therefore
E=0, 06, =cos’(v) + sin®(v) +1=2
F =0, 0, = —ucos(v)sin(v) + ucos(v) sin(v) = 0

G=0,-0,=1u’ sinz(v) + u? cos?(v) = u?
The first fundamental form of o is
Fy = 2du? +u? dv?.

Concering the curve y, we have
y(@®) :=o(t,1),

so that
ult)=t, v(t)=t.

In particular

and

E(u(t),v(t)) = E(t,t) =2
F(u(t), v(t)) = F(t,1) = 0
G(u@®),v(t)) = G(t,t) = 1.

By Proposition 4.109 we have

T T
J ly@®)| dt = J \/ Eu? + 2Fuv + Gv2 dt
/2

/2
T

= J N2 +t2dt.
/2
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4.11.3 Local isometries

We have seen that a plane 7 and a cylinder € have the same first fundamental form. This means that scalar
product on the two surfaces is the same, as is the length of curves. In this case we say that & and € are locally
isometric. Let us give a general definition of such concept.

Definition 4.111: Local isometry

Let & and & be regular surfaces. A local diffeomorphism f : & — § is a local isometry ifforallp € &
the differential dp, f : Tp S — Ty(p)S satisfies

V-wzdpf(v)-dpf(w), vv,weT,S.

We say that & and S are locally isometric if there exists a local isometry f: & — S.

Figure 4.20: Sketch of local isometry f between & and . The scalar product between tangent vectors v and
w is preserved by d,, f.

Notation

For brevity we denote

VW) = VoW, (W) s = dp f(V) - dp f(W),

IVl :=v,v),  Ivlp o= vy

and also
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Remark 4.112
A local diffeomorphism f : & — & is a local isometry if and only if
(v,v)=(v,v)r, VveT,S.
The proof follows from the elementary identity
V-w = %((v+w)-(v+w)—v-v—w-w) ,

which holds for all v,w € T,& (and more in general in arbitrary vector spaces with inner
product).

Local isometries preserve the length of curves, as shown in the following proposition.
Proposition 4.113
Let & and & be regular surfacesand f: & — &8 be a local diffeomorphism. They are equivalent:

1. fisalocal isometry _
2. Lety be a curve in & and consider the curvey = f ey on &. Then y and y have the same length.

Proof

Part 1. Suppose y : (fp,;) — & is a smooth curve. Consider the smooth curvey := foy: (fp,f1) = S.
Setting p : = y(t), by definition of differential of a function between surfaces we have

y(®) = df, (7).

Hence

ol =@ @)
= df, () - df, (1))
= () -y
= Iy’

where in the second last inequality we used that f is a local isometry. Therefore y and y have the same

length:
tl . tl
[ wora= ol
) )
Part 2. Let v € T, S Then there exists a curvey : (—¢,€) = & such that

y©=p, y0)=v.
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Define the curvey := foy: (—¢,¢6) — S. By assumption y and y have the same length, that is,

J_ Jr® -y dt = f VY@ -y@®at.

Since the above is true for each ¢ > 0, we infer
7(0) - ¥(0) = y(0) - 7(0).
Recall that by definition of differential we have
dfp(v) = y(0).
Therefore
dfy(V) - dfp(v) = y(0) - y(0)
=y(0)-y(0)

=V-V.
As v was arbitrary, we showed that
dfp(v)-dfp(v)=v-v, VveT,(S).

Thanks to Remark 4.112 we conclude that f is a local isometry.

We have seen that local isometries preserve the length of curves. It also happen that they preserve the first
fundamental form.

Theorem 4.114
Let & and & be regular surfacesand f: & — S be a local diffeomorphism. They are equivalent:

1. fisalocal isometry. _
2. Leto : U — & be aregular chart of & and consider the chart of & given by

6=fe0:U—> S .
Then o and o have the same first fundamental form, that is,
E=E, F=F, G=0G,
where

E=06,-0,, F=0,0,, G=o0,0,,

E=6,6,, F=6,6,, G=6,6,.
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Proof

Part 1. Suppose that f is a local isometry, that is,
v-w=d,f(v)-dpf(w), Vv,weT,S.

Let o be a chart for § at p. Define 6 = f -o. By Proposition 4.69, ¢ is a regualar chart of S at f(p). Now,
recall the statement of Proposition 4.83: if

o(a(u,v), p(u,v)) = flo(u,v)),

for some smooth maps
a,fp:U—-U,

then the matrix of d}, f with respect to the basis

0,03 of T,8, {6,6,} of Typ)S,

or=(5 )

o(u,v) = flo(u,v)),

is given by

In our case, we have U = U and

so that
aw,v)=u, puv)=mv.

wr=(5 5)-(a %)

dpf(6,)=1-6,+0-6,=6,
dyf(6,)=0-6,+1-6,=6,

Therefore

which means that

Usingg that f is a local isometry we get To this end, note that
E=0, 0,=d,f(0,) dpf(o,)
=6, 6,=E.
Simlarly, we obtain also

F=0,-0,= dpf(o'u)'dpf(o'v)

~

=6, 6,=F,
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and

G=0,-0,= dpf(o'v)'dpf(o'v)

~

=6,6,=0G,

showing that o and ¢ have the same first fundamental form.
Part 2. Define 6 = f - ¢ and suppose that 6 and ¢ have the same first fundamental form. In particular
they hold

6, 0,=0, 0,
6, 6,=06, 0,

0, 0,=0,0,
As discussed above, since 6 = f - g, by Proposition 4.83 we get
dpfloy) =6y, dpflo,)=0,.
Let v € T,S. Since {0,,0,} is a basis for T, & we get
v = Ao, + po,
for some A, 4 € R. Therefore
dpf (V) = dp [0, + i)

= 1y f(0,) + pdy f (o)
= Ao, + uo,, .

Hence

v-v = (Ao, + po,) - (Ao, + o)
= 20, -0,) +244(0,, - 6,) + yi*(0,, - 0)
= 246, -6,) + 206, - 6,) + 416, - 6,)
= (Ao, + po,) - (A6, + po,)
= Ay f(V) - dp V),
showing that
v-v=dyf(v)-dpf(v), VveT,S.

By Remark 4.112 we conclude that f is a local isometry.
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4.11.4 Angles on surfaces

We want to define the notion of angle between tangent vectors.
Definition 4.115: Angle between tangent vectors

Let & be a regular surface and p € &. The angle between two vectors v,w € T, is defined as the

number 6 such that
VW

vl wl -

cos(f) =

Figure 4.21: Sketch of angle 6 between two vectors v, w in T, 8.

The angle between tangent vectors can be computed in terms of local charts.
Proposition 4.116
Let & be a regular surface and o a regular chart at p. Let v,w € T, §'. Then

EAL+ FQAfi + Ap) + Gpji
(EA2 + 2F A + Gu2)V/2(EQ? + 2FAfi + Gi2)l/2

cos(0) =

where A, p, /~1 [ € R are such that

V= Ao, + po,, w=/~10'u+ﬁav.
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Proof

By definition the angle between v and w is

V-W

cos(f) = (4.6)

vl Iwl
The vectors {6, 0} form a basis of T,§. Therefore
v=»Ao, + po,, w:jau+[wv.
for some A, p, /~1, il € R. Hence, the coordinates of v and w with respect to the basis {6,,0,} are
v=0w, w=0p.
By Proposition 4.103 we get
vow=I(v,w)
—n(§ g )G
= EAL+ F(QAfi + Ap) + Gpji.
Similarly, we obtain

IVI? = v-v = EA? + 2FAu + Gu?
Iwl|? = w-w = EA? + 2FAji + Gji* .

Substituting in (4.6) we conclude.

4.11.5 Angle between curves

Since tangent vectors are derivatives of curves with values in &, it also makes sense to define the angle
between two intersecting curves.

Definition 4.117: Angle between curves
Let & be a regular surface and suppose to have two curves
y: (ab)—>8, y: @b) > S

such that
r)=p, r)=p.
Then
y(to), y(t) € TS .
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The angle 6 between y and  is the angle between y(t,) and y(%,), that is,

os(@) = ¥,
17l

where  is evaluated at t; and y at .

NN

Figure 4.22: Sketch of angle 6 between two curvesy andy on &.

Proposition 4.118

Let & be a regular surface and o a regular chart at p. Suppose given two curves
v: @b)—>8, 7:@b)—>S
such that
y)=p, v)=p.
The angle betweeny and y is

Euii + F(av + av) + Gvv
cos(f) =

.2 .. 2 ’
(Ed? + 2Fuw + Gv)V/2(Ed” + 2Fiiv + Gv )1/?

where u, v, i1, v are smooth functions such that

y@® =o@u®),v®), y)=o@@),v).
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Proof

By definition the angle between y andy is

os(0) = Q

7 (@7

Asy,y are smooth curves with values in &, by Lemma 4.74 there exist smooth functions u, v, ii, v such
that

Y@ =o@u®),v(®), y@)=o@@),v).

Differentiating the above expressions we obtain
Yy = uo, +vo,, f(zﬁau+\30'v.
Therefore the coordinates of y and y with respect to the basis {6, ,} of T,S are
y=@v), y=@wv).
By Proposition 4.103 we get
V¥ =50y
~@i( 7 g )@
= Euii + F(uv + iv) + Gvv.
Similarly, we obtain
VI? = -y = Ei + 2Fuv + Gv?
f12 = - = Eii’ +2Fii + GV

Substituting in (4.7) we conclude.

4.11.6 Conformal maps

Local isometries are maps which preserve the scalar product of tangent vectors. We want to consider maps
which preserve the angle of tangent vectors. These will be called conformal maps.

Definition 4.119: Conformal map

Let § and § be regular surfaces. A local diffeomorphism f: & — § is a conformal mapping if for all
p€ S andv,we TS is holds

0=0,
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with 6, 0 the angles between v, w and dp f(v), dp f(W), respectively.

Figure 4.23: Sketch of conformal map f between & and §. The angles between tangent vectors are preserved
by d, f.

Remark 4.120

We have that f is a conformal map if and only if

(v,w) (v, w)s
Ivilwl  IvlglIwl g

VV,w € TPCS’.

This follows immediately by the definition of angle between tangent vectors.

Proposition 4.121

Let f be alocal isometry. Then f is a conformal map.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 244

Proof

By definition of local isometry we have
(v,w) = <V,W>f , Vv,weE TP<§’.
In particular we have
VI = (v, v) = (v, v); = VI,
for all v € T, §'. Therefore
(v,w) (v, w)y
IVl wl vl g Iwl

showing that f is a conformal map.

Therefore every local isometry is a conformal map. The converse is false, as we will show in Example 4.124
below. Before giving the example, let us provide a characterization of conformal maps in terms of the first
fundamental form.

Theorem 4.122
Let & and & be regular surfacesand f: & — § alocal diffeomorphism. They are equivalent:

1. f is a conformal map.
2. There exists a function A : & — R such that

(v,w>f =Ap) (v,w), Vv,we TpoS’.

Proof

Step 1. Suppose f is a conformal map, so that
(v,w) (v, w);
Iviwl vl fwl

Let {&, @y} be an orthonormal basis for T, &, that is,

vv,weT,S . (4.8)

(@,a2) =0, Jay| = faz] =1.

Define
Ap) = (. an) s = a7
pp) := (al,a2>f :
v(p) 1= (. 02) 5 = gl
By (4.8) we have

(al,a2> _ <al’a2>f
lenllez] Nyl plleal
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Since a1 - @y = 0, from the above we get

H(P) = (@r.az); = 0.

Moreover, since a; and a, are orthonormal, the angle between a; and a; + a; is 0 = /4. By definition
of angle between vectors, we infer

V2 _ _{aa; +ay)
— =cos(f) = —————.
2 ler1lleey + s

On the other hand, using (4.8) we get

(ay,a; +az) (@i, a; +“2>f
laillery + el eyl flay +asl

The numerator of the right hand side satisfies

(apa; +az)p =(ap,a)) s+ (@ a)s
= A(p) + p(p)
= Ap),

since p(p) = 0. Concerning the denominator, we have

ey +0‘2||§c = ||0!1||§c +{agaz)p + ||“2||§v
= A(p) + u(p) +v(p)
= A(p) +v(p).

since pu(p) = 0. Putting together the last 4 groups of equations, we obtain

V2 A

2 M2t/

Rearraging the above equation yields
Ap) =v(p).
Now let v € T, 8. Since {1, @} is a basis for T, 8, there exist v;, v, € R such that

V =V + wa- .
Therefore

(v,v) = vE{ay,ar) + 2wy (@, @) + v (o, atp)

=i+,
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where we used that &@; and @, are orthonormal. On the other hand,

(v,v)p = Vi (@, ap)p+2vivy g, az)p + V5 (@z,az) ¢
= v{ A(p) + 2vyv, u(p) + v5 v(p)
= Ap) (vf + ).

where we used that A(p) = v(p) and u(p) = 0. Thus
(Vv = Ap) (4 +33) = A(p) (v,v) |
forall v e T,S. Since (,,-) and (-, ) ¢, by arguing as in Remark 4.112 we conclude that
(v.w)r = A(p) (v, w)

forall v,w € TPS.
Step 2. Suppose that there exists a function 1 : & — R such that

(v,w>f =Ap) (v.w), VvweT,S.

In particular, we have
Wl = VAPV, VveT,S.

Then
(vw)y A vw)  (vw)

Vigwly — apvifA@)lw]  VIlwl

showing that f is a conformal map.

Corollary 4.123
Let & and § be regular surfacesand f: & — S be a local diffeomorphism. They are equivalent:

1. f is a conformal map. _
2. Leto : U — & be aregular chart of & and consider the chart of & given by

6=fo0:U—S.
There exists A : U — R such that
f/?l =AMu,v)F, V(uv)eU,

where %; and %, are the first fundamental forms of & and &, respectively.

The follows by using Theorem 4.122, and by adapting the argument in the proof of Theorem 4.114.
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Example 4.124: Conformal maps are not local isometries

Consider the plane & with chart
o(u,v) := (u,v,0).

Let § be the sphere with parametrization
o(u,v) := (sech(u) cos(v), sech(u) sin(v), tanh(u)) .

We have
Gu:(lsO,O), Uv:(o,l,O),

so that

E=0,-0,=1
F=0,0,=0
G=0,0,=1

Therefore the first fundamental form of & is

Using the identitities
di (sech(u)) = —sech(u) tanh(u),
u
4 (tanh(u)) = sechz(u),
du

we obtain

0, = (—sech(u) tanh(u) cos(v), — sech(u) tanh(u) sin(v), sechz(u))
6, = (—sech(u) sin(v), sech(u) cos(v), 0)

By recalling that
sechz(u) + tanhz(u) =1,

we compute

Hence the first fundamental form of & is

ﬁl = sechz(u) (du2 + dvz) )
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Now, consider the map f: & — § defined by

fu,v,0) =6(u,v).

In particular f satisfies
o v) = 6(u,v).
We have:

+ f is not a local isometry.

If f was alocal isometry, by Theorem 4.114 we would conclude that ¢ and 6 = f -6 have the
same first fundamental form. However

F = du® +dv? = sechz(u) (du® + dv?*) = F.
+ f is a conformal map.
The first fundamental forms of ¢ and 6 = f - o satisfy
% =AMu,v) F, Au,v) :=sech(u).

Therefore f is a conformal map by Corollary 4.123.

4.11.7 Conformal parametrizations

We conclude this section with the definition of conformally flat surface and conformal parametriza-
tion.

Definition 4.125: Conformally flat surface and conformal parametrization

Let & be a regular surface and
c:U—->&

be a regular chart of . We say that & is conformally flat and ¢ is a conformal parametrization if
the first fundamental form of o satisfies

Fy = Mu, v)(du? + dv?)

for some smooth function A: U — R.

Definition 4.125 is motivated by the following Theorem: It states that angles on conformally flat surfaces look
like angles on a plane.
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Theorem 4.126

Let & be a regular surface and
c:U—->olU)CS

be a regular chart of §. Define the plane & charted by
o(u,v) =(w,v,0), V(uv)eU.

1. They are equivalent:
« 0 is a conformal parametrization.

« There exists a conformal map f: = - o(U) C §.

2. A conformal parametrization o preserves angles between vectors, in the following sense: Suppose
Y1.Y, are curves in R? such that

Y1) = y2(to) .

Consider the corresponding curves on & given by

Y1 :=0°Y), Yy=0°Y;.

If
Y1(t),¥2(ty) form an angle 6,
then ‘ ‘
Y1) .y,(t) form an angle 6.
Proof

Proof of Point 1. Define the diffeomorphism f : * — & by

fw,v,0) =o(u,v).
In particular
fe(w,v) =a(uv).

By Corollary 4.123 we have that f is a conformal map if and only if there exists A : £ — R such that
F1 = w7,

where #; and 9~1 are the first fundamental forms of & and 7, respectively. Since x is a plane, the first
fundamental form is given by _
F = du? +dv?

Therefore
F1 = AMu,v) (du? + dv?) ,

showing that ¢ is a conformal parametrization.
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Proof of Point 2. Suppose o is a conformal parametrization. By the proof of Point 1 we have that
firn—>8, fwv,0)=0(wv),

is a conformal map. Since Ty = R? and f = o, it follows by the definition of differential and f being

conformal that the angle between y; and y, is the same as the angle between y; and y,.

Example 4.127: Unit cylinder

The cylinder & charted by
o(u,v) = (cos(u), sin(u), v)

is conformally flat, since the first fundamental form of o is
Fy = du® +dv?.

Therefore o is a conformal parametrization of §'.

Example 4.128: Shpere
Consider the parametrization of the sphere

o(u,v) = (sech(u) cos(v), sech(u) sin(v), tanh(u)) .
In Example 4.124 we have seen that the first fundamental form of ¢ is

F, = sech(u) (du® + dv?).

Therefore o is a conformal parametrization of the sphere.

4.12 Second fudamental form

The first fundamental form allows to measure distances on a surface. However it does not give any infor-
mation on how curved a surface is: For example, we saw that a plane and a cylinder have the same first
fundamental form

F = du® + dv?.

However the plane is flat, while the cylinder curves. We would like to find a measure of curvature which
allows us to tell these two surfaces apart.
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4.12.1 Unit normal and orientability

Before talking about curvatures, we need to clarify what we mean by normal vector to a surface and ori-
entability. Let & be a regular surface and p € §. The tangent plane T,,§ passes through the origin. Therefore
TpS is completely determined by giving a unit vector N perpendicular to it:

TpoS’:{xe]R3 : x-N = 0}.

In this case we write
N1 TpoS’ ,

to denote that N is perpendicular to T,§. Clearly, also —N is a unit vector, and

(-N) LT,S.

Question 4.129

Which unit normal should we choose between N and —N?

There is no right answer to the above question. One way to proceed is the following.
Remark 4.130

Suppose that 6 : U — R3 is a regular chart for §. Let p € 6(U). Then
T,S = span{o,,0.,} .
Therefore we can choose the unit normal to T, as
N, .o FuXOy
7 ouxa,l
Clearly N, has unit norm. Moreover

Ns-0,=0, Ngz-0,=0

by the properties of cross product, showing that Ny is perpendicular to TS

There is however an issue: N, is not independent on the choice of chart o. Indeed, suppose thaté : U —
R3 is a reparametrization of o, that is,

=060, ®:U-U,
with ® diffeomorphism. As shown in the proof of Proposition 4.61, we have
6;x6; =det(J®)o, x0,.

Hence o det 16
;X0 et o,X0
N&- — ~u NV — ] u v — :l:No-.
|67 x 65 [det JO| Jo, x 0

Therefore the sign on the right hand side depends on the sign of the Jacobian determinant of the transition
map P.
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The above remark motivates the following definitions.
Definition 4.131: Standard unit normal of a chart

Let § be aregular surface ando : U — R® aregular chart. The standard unit normal of ¢ is the smooth
function 6. Xo
NO_:U—)]R?’, No_::u_

low > ol

Definition 4.132: Charts with same orientation
Let & be a regular surface ando : U — R3,6 : U — R regular charts such that
o) n6(0) 0.
Denote by @ the transition map between 6 and 6. We say that:
1. 0 and 6 determine the same orientation if
det J® >0,

where @ is defined.

2. 0 and ¢ determine opposite orientations if
det J® <0,

where @ is defined.

Example 4.133

Let a, p, q € R? and suppose that p and q are linearly independent. The plane spanned by p, q and passing
through a can be parametrized by

o(u,v) ;=a+pu+qv, V(uv)eR?.
An alternative parametrization is given by
6(u,v) :=a+qu+pv, V(uv)eR?.

We have
oy,=pP, 0y=(q,

and therefore
Pxq

Clpxql’

(2
Similarly, we have
qxp —pxq

N: = = ,
laxpl Ipxq]
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Hence o and ¢ determine opposite orientations.

showing that
N, = -N; .

If a surface can be covered by charts with the same orientation, it is called orientable.
Definition 4.134: Orientable surface
Let & be a regular surface. Then:
1. An atlas o = {0}};cs is oriented if the following property holds:
o U)nojU) #® = detj®>0,
where @ is the transition map between o; and 0.
2. & is orientable if there exists an oriented atlas &/.

3. If an oriented atlas &/ is assigned, we say that & is oriented by &.

Example 4.95. Details about the non-orientability of the Mobius band can be found in Example 4.5.3 in

[6].

Example 4.136

Leto : U — R® be a regular chart. Then
Sy :=0(U)

is a regular surface with atlas &/ = {o}. Therefore & is orientable.

This is because we have only one chart. Therefore any transition map ® will be the identity,
so that det J® =1 > 0.

Warning: Orientability is a global property

The above example is saying that orientability is a global property: To determine wether a surface & is
orientable, we need to examine the transition maps for the entire atlas &/. This is because a single local
parametrization 6(U) C & is always orientable.

Example 4.135
All the surfaces we encountered in these Lecture Notes are orientable, except for the Mobius band in
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Remark 4.137

Let 0 and ¢ be regular charts with transition map ®. We have seen in Remark 4.130 that

_ det]J®
T |detJo| °°
If 6 and 0 determine the same orientation, then
det J® > 0,
which implies
Ns =N .

Hence, if & is an orientable surface, one can define a unit normal vector at each point of &, without
ambiguity.

Definition 4.138: Unit normal of a surface
Let & be a regular surface. A unit normal of § is a smooth function N : & — R> such that

N(p) LTS, IN(p)|=1, vVpes.

Warning

We require the function p — N(p) to be globally defined on & and smooth.

Proposition 4.139
Let & be a regular surface. They are equivalent:

1. & is orientable.

2. There exists a unit normal N: & — R3.

The proof follows from the above arguments. For details, we refer the reader to Proposition 4.3.7 in [1].

In view of the above propostion, for an oriented surface there is a natural choice of unit normal, which we
call standard unit normal of §.

Definition 4.140: Standard unit normal of a surface

Let & be aregular surface oriented by the atlas &/. The standard unit normal to § isthemapN: & —
R® such that
Noo =Ny,
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for each chart o € &, where
3 0,%x0,
Ng:U—->R’, Nj=——
loy x|

is the standard unit normal of &.

Notation

In the following we will denote by N both the standard unit normal of & and of a chart.

4.12.2 Definition of Second fundamental form

We can now start our discussion about curvature of surfaces. We can make a similar argument to the one we
made for curves: If y is a unit speed curve, the curvature of y is defined as

NOES {O]

The quantity x(¢) gave us a measure of how much y is deviating from a straight line. Similarly, we would like
to quantify how much a surface § is deviating from the tangent plane T, 8. Recall that

T,S = span{o,,0.,},

where o is a regular chart of § at p. The standard unit normal of g is
o, %0,

“louxal’
which is orthogonal to T, 8. Let (ug, v) € R? be the point such that
o(ug,v) =P-
As the scalar quantities Au and Av vary, the point
o(uy +Au,vy + Av) e §
deviates from the tangent plane T;,§". Since N is orthogonal to T, &, the deviation is given by
6 1= lo(uy + Au,vy + Av) — a(ug, V)] - N,
as shown in Figure 4.24.
Using Taylor’s formula we get
o(uy + Au, vy + Av) = a(ugy, vy) + a,(uy, vo) Au + 0, (ug, vy) Av
+ 2 (000, )(B)? + 20 (g, 1) AUAY + 0 (i 1) A)?)

+ R(Au, Av),
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_ Tu x 0y
N T x 0

—g

U‘Uloi'Au, \ro"fA\‘)

)

F =7 Mo,Yo)

Figure 4.24: The point o(uy + Au, vy + Av) on § deviates from T, & by a quantity .

where R(Au, Av) is a remainder such that

. R(Au,Av)
lim ————= =

A = (Au)? + (Av)?.
lim A , (Au)® + (Av)

Since N is orthogonal to 6, and 7, if we multiply the above Taylor expansion by N, and ignore the remainder,
we obtain .
S = 5 (L(Aw)? + 2MAulv + N(Av)?) ,

where we set
L:=¢,, N, M:=0,, N, N:=0,, N.

The expression
Fy = Ldu® + 2M dudv + N dv?

is called the second fundamental form of &. Therefore %, measures how much the surface & deviates
from being a plane. Let us make this definition precise.

Definition 4.141: Second fundamental form of a chart

Leto : U — R3 be a regular chart of §. Denote the standard unit normal of & by

0, XO
N:U->R, N=3“"Y
loy x 0|

Define the functions
LM,N:U—-R
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by setting
L:=0,,N, M:=0,,"N, N :=0,,-N.

Let p € 6(U) and denote by (uy, vy) € U the point such that
o (up, vp) = p.

The second fundamental form of ¢ at p is the quadratic form
Fy: T8 >R

defined by
Fo(v) 1= Ldu?(v) + 2M du(v) dv(v) + N dv3(v), (4.9)

forall v € TpoS’ . Here L, M, N are evaluated at (u,v,), and du, dv are the coordinate functions as in
Definition 4.101.

Notation

With a little abuse of notation, we also denote by %, the 2 x 2 matrix

L M
LG}Z:<MN)

Remark 4.142: Second fundamental form and reparametrizations

The second fundamental form
Fy = Ldu? + 2M dudv + N dv?

depends on the choice of chart ¢ : U — R3. Indeed, let us adopt the same notations as Remark 4.105.
Suppose that & : U — R3 is a reparametrization of & with

6=0°0,
where @ : U — U is a diffeomorphism. Denote the second fundamental form of & by
Fo = Ldii® + 2M dudv + N di® .
The matrices of #, and % are related by
(A% %>=i(]<1>)T (]@ %)Job, (410)
where (4.10) holds with + if det J® > 0 and — if det J® < 0.

Formula (4.10) holds by a change of variable argument. The sign depends on the sign of

det J® because

N 6;%x06; _ detJ® o,x0,

=4V = £N,
|65 %651 |det J@| Jo, x o, |
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as shown in Remark 4.130.

Let us show that a plane and a cylinder have different second fundamental forms.
Example 4.143: Plane
Let a, p, q € R®. Suppose that p and q are orthonormal vectors, that is,
Ipl =1lql =1, p-q=0.

Consider the plane with chart

o(u,v) =a+up+vq, (uv)eR?.
Prove that the second fundamental form of o is

Fy=0.

This reflects the intuition that a plane is flat, and therefore there is no curvature.

We have
o,=p, 0y,=q.

The principal unit normal is
Pxq

“lpxql’

while the second derivatives are

Therefore
L=0c,,-N=0
M=06,,N=0
N=0,,N=0

and the second fundamental form is

Fp = Ldu® + 2Mdudv+Ndv? =0.
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Example 4.144: Unit cylinder
Consider the unit cylinder with chart
o(u,v) = (cos(u), sin(u),v), (u,v)€ (0,27)xR.
Prove that the second fundamental form of o is
Fy = —du? .

This reflects the intuition that the cylinder curves only when moving in the v-direction. In such direction
we are moving on a circle of radius 1, therefore we expect the curvature to be —1.

We have
o, = (—sin(u), cos(u),0), o, =1(0,0,1),

and also
04y = (—cos(u), —sin(u),0), 6, =0y, =0.

We have also

i i k
o,%x0,=| —sin(u) cos(u) 0 |=(cos(u),sin(u),0)
0 0 1

so that

I % 0y = \Jcos2(u) + sin®(u) = 1.
The principal unit normal is
o, %0,

N = ——— = (cos(u), sin(u),0).
loy <o)

We finally compute
L=0c, N
= (—cos(u), — sin(u), 0) - (cos(u), sin(u), 0)
= —cos?(u) — sinz(u) =-1
M=0c,,N=0
N=¢,,N=0

The second fundamental form is

Fy = Ldu? + 2M dudv + N dv? = —du? .
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Remark 4.145

We have seen that a plane and the unit cylinder have the same first fundamental form
Fi = Fy = du® +dv?,

while their second fundamental forms differ: we have
Fy =0, ﬁz = —du?,

respectively.

4.12.3 Gauss and Weingarten maps

Another way to quantify how much a surface & is curving is by examining the behavior of standard unit
normal N. If § is a plane spanned by vectors p and q, then its standard unit normal is

_ Pxq
Ipxq|’

which is constant across &. If § is a general surface, measuring the variation of N will tell us how much & is
deviating from being a plane. This is the idea behind the definition of the Gauss and Weingarten maps.

Remark 4.146
Let & be oriented and N : & — R® be the standard unit normal. In particular N is a smooth map and
N(p) LT,8, IN(p)=1, vpes.
Since T, & passes through the origin and N has norm 1, it follows that
N(p es® :={xeR’ : |x| =1},

where $2 is the unit sphere in R3. Thus N : & — $2.

Definition 4.147: Gauss map
Let & be an oriented surface and N the standard unit normal to §'. The Gauss map of § is the map

Cs: 8 —>8%, Zo(p) :=N(p).
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s(p)=N
N(P) G 4s(p) = N(p)

T

S 87'

Figure 4.25: The Gauss map € of & is defined as €¢(p) := N(p). Note that L¢(p) € $2.

Remark 4.148

The Gauss map of & is just the standard unit normal of &. By definition of standard unit normal to &

we obtain that
?Cg’ oo =N

for all charts ¢ : U — R®, where N = N, is the standard unit normal to @, that is,

0, X0
N:U->R}, N:=2 Y.
loy, <o,

Example 4.149

1. Suppose & is the unit sphere $2. Then €¢ : & — $? is the identity, see Figure 4.26.

2. Let a,v,w € R? with v and w linearly independent. Let & be the plane
o(w,v) :=a+vu+wv, V(uv)eR?.

The Gauss map of & is constant:
VXW

Zs(p) =

[v > wl’

for all p € &, see Figure 4.27.
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3. Let & be the unit cylinder

o(u,v) = (cos(u),sin(u),v), (u,v)€ (0,27)xR.

Then
o, = (—sin(u), cos(u),0), o, =(0,0,1),

and

i ik

o,%x06,=| —sin(u) cos(u) 0 |=(cos(u),sin(u),0).

0 0 1

Therefore
||o-u x o-v" =1,
and o Xo
N=—"2"" = (cos(u),sin(u),0).
loy x 0|

The Gauss map of & is
?05’ (P) = (COS(uO)» Sin(u0)5 0) s

where (1, v) is such that a(u, vy) = p. Note that €¢ maps § into the equator of $2, see Figure 4.28.

iy

S Q°

Figure 4.26: The Gauss map &g of a sphere is the identity.
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Gs gls(P) = g(.c(q)

8?,

Figure 4.27: The Gauss map &g of a plane is constant.

Figure 4.28: If & is the unit cylinder, the Gauss map €¢ maps & into the equator of $2.
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Remark 4.150

By definition, the Gauss map is a smooth function between surfaces. Therefore the differential of ¢ is

well defined, and
dpTs : TpS = Tgyp)S°.

for all p € . We have that
Tgs(p)Sz =TS, (4.11)

see Figure 4.29. Therefore
s TS > 1,8 .

Proof. The tangent plane Te S(p)Sz passes through the origin and
?(p) 1 Tg&,(P)Sz .

By definition €(p) = N(p), and thus
N(p) L Ty (p)S°-

Since by definition
N(p) L TS,

we infer (4.11).

Figure 4.29: We ca identify Tg S(p)Sz with T, & This is because &(p) L Ty S(p)SZ and Z(p) = N(p).
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Definition 4.151: Weingarten map

Let & be an orientable surface and & : & — $? its Gauss map. The Weingarten map Wp,s of S atpis
the negative differential of the Gauss map at p, that is,

/2

ps i TS > T8, Wps(v) :=—dpG(v),

forallv e TP<§’.

Important

The Gauss map encodes information on the standard unit normal N to &. Hence its derivative, the
Weingarten map, detects the rate of change of N.

Remark 4.152

The minus sign in the definition of 7%/, s is a convention, just like we defined the torsion to be the scalar
7 such that

b=-rn.

The Weingarten map allows us to define a bilnear form on T,8. We call such bilinear form the second
fundamental form of §.

Definition 4.153: Second fundamental form of a surface
Let & be an orientable surface and denote by

Ty

S Tpcf - Tpcsj
its Weingarten map at p. The second fundamental form of & at p is the map
1L : T,8 xTp§ - R

defined by
(v, w) :=Wps(v) - w, Vv,weT,S.

Remark 4.154

The second fudamental form I Ip of & is bilinear.

Indeed, Wp,é’ is linear, being the differential of a smooth map. Hence I I is bilinear, given
that the scalar product is bilinear.
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Remark 4.155: Matrix of the second fundamental form

Let o be a chart at p € §. Since I1, is a bilinear form on T, &, it can be represented by the 2 x 2 matrix

a ( IIy(6,.0,) 1Iy(0,.0,) ) |
IIp(o-v,O-u) IIP(O-V’O-V)

given that {,,,0,} is a basis for T,&. In a not so shocking turn of events, it happens that

where
L=6¢, N, M=0,,N, N=o0,,N.

Therefore, the second fundamental form I IP coincides with the second fundamental form &, of the chart
o. We prove this statement in the next theorem.

Theorem 4.156
Let & be an orientable surface ando : U —» R3 be a regular chart. Let p € a(U).

1. The second funamental form I, is a symmetric bilinear map.

2. It holds

I1(v, w) = (du(v), dv(v)) ( e ) (du(w), dv(w))T |

forall v,w € TpcS’ , where

L=o6,,,N, M=0,,N, N=o0,,-N.

3. o is the quadratic form associated to I Ip, that is,

Fo(v) = 1Ip(v,v), VVET,S.

To prove Theorem 4.156 we use the following two Lemmas.

Lemma 4.157

Leto : U — R be a regular chart with standard unit normal N : U — R®. Then

N, o,=-L,
N,-6,=N,-0,=-M,
N,-0,=—-N.
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Proof

The vectors 6, and o, form a basis for T,§'. Since N is orthogonal to T;,§ by definition, it follows that
N.oc,=0, N:0,=0.
Differentiating the above with respect to u and v yields the thesis. For example, we have
:—u(N 6,)=0.
On the other hand, by chain rule,
aiu(N-au) =N,-6,+N-6,,=N,-0,+L,

from which we infer
N,-o0,=-L.

The rest of the proof follows similarly.

Lemma 4.158

Let & be an orientable surface and %}, 5 : TpS — TS be its Weingarten map at p. Let o be a regular
chart at p, with o(uy, vy) = p. Then

Wp,&(au) = _Nu > Wp,&(av) = _Nv >

where 6,,0,,N,, N, are evaluated at (uy, v).

Proof

Since Wy, s is defined as —d, g, we can compute %}, ¢(0,) and %, ¢(0,) by using the definition of
differential of a smooth function. To this end, consider the curve

y(@) :=a(uy +1,%).

We have that y is a smooth curve in & and

y(®) =o,(uy +1,%).
Therefore
y(0) =o(up,vp) =p, ¥(0) =0,(up, wp).
Define
Y(®) :=(Fsoy)).

By Remark 4.148
Y(®) =Zs(t) = Gs(o(uy +1,v)) = N(yp +t,v).
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Thus ' .
Y() = Ny(up +t,v), y(0) =Ny (up,vp)-

By definition of differential, we have
Wp,é’(au) = _dpcgé’(o-u) = _?(0) = _Nu(uO: VO) >

as we wanted to prove. To show that

Wp,é’(o-v) = _Nv(uO’ VO) )

it is sufficient to consider the curve
Y(t) = 0'(1/[0, Yo + t) 5

and argue similarly. This is left as an exercise.

We can now prove Theorem 4.156
Proof: Proof of Theorem 4.156

By Theorem 4.75 we have
T,S = span{s,,0,}.

Therefore, for v,w € TpoS’ , there exist A, A, 1y, ity € R such that
v =Mo,+140,, W=2L1o,+ 0,.
By bilinearity of 11, we infer
IIP(V, W) = AIAZ IIp(O'u,O'u) + ALUZ IIP(O'u, O'V)
+ Ao IIp(O'wo-u) T Ha IIp(O'v’o-v)
= du(v)du(w) II,(6,0,) + du(v)dv(w) I1,(6,,0.,)
+ dv(v)du(v) IL,(0,,0,) + dv(v)dv(w) II,(0,0,)

I,(6y,0y) ILy(0,.0,)
= (du(v), dv(v)) ( IIi(O-vao-u) IIi(o-v’o-v) ) (du(w), dv(w))T .

By Lemma 4.158 and Lemma 4.157 we have
Wys@,)=-N,, L=-Ny-0,.
Therefore, using the above and the definition of I1,, we get
Iy(oy,0,) = Wy s(0y) 6, =—-Ny-0,=1L.
With similar calculations we obtain

Iy(oy,0,) = I,(0,,0,) =M, IL(e,0,)=N,
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concluding the proof of point 2. In particular this also proves that I, is symmetric, which is Point 1 of
the statement. The fact that
I(v,v) = F5(v)

follows from Point 2 and definition of F,.

4.12.4 Matrix of Weingarten map

The Weingarten map is a linear map
Wps: TpS - T,8.

We would like to find a formula to compute %}, . This is easily done: Given a chart o at p, we have that
{o4,0,} is a basis for the vector space TS Therefore there exists a 2 x 2 matrix A which represents 7}, s,
that is,

Wy s(v)=Av, VveT,S.

It turns out that
A=FF,

where we recall that

E F L M
(77— (77—
A=(ra) == (i)
where
E=0,-0,, F=0,0,, G=o0,0,,
L=0y,, N, M=0, N, N=0, N,
and
o, X%0,y
loy <oy

Let us prove this claim.
Theorem 4.159: Matrix of Weingarten map

Let & be an orientable surface and 7, ¢ : T,& — TS be its Weingarten map at p. Let o be a regular
chart at p, with 6(uy, vy) = p. Then

Wp,&(v) = 91—192( i ) , Vve Tpof s

where
v=»Ao, + po,,

with o, and o, evaluated at (ug, vp).
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Proof

By Theorem 4.75 we know that {o,,0,} is a basis of T, §". Since #}, s : T, & — T, & is linear, by standard
linear algebra results there exist coefficients a, b, c,d € R such that

a b A
Wp’g(v)=<c d)(u) vveT,S,

where
vV=Ao,+ 1o, .

The coefficients a, b, c,d € R can be compute by solving the linear system
Wp,é’(o'u) = ao, + bo,
Wy, s(0,) =coy, +do,,.

By Lemma 4.158 we have
Wp,é’(au) = _Nu > Wp,&(av) = _Nv >

so that we obtain

—-N, = a0, + bo,

-N, =co, +do, .
Taking the scalar product of the above equations with 6, and o, we get

-Ny -0, = alo, -0,) + b(o, -0,)
-Ny-¢, = a(o, -0,) + b(o, - 0,)
-N, -0, =c(0,-0,) +d(o,-0,)
-N, -0, =c(0,0,)+d(0, 0,)

By Lemma 4.157 we have

N,-o0,=-L, N, 0,=-M,
N, -0,=—-M, N,-0,=—-N.

If in addition we recall the definition of E, F, G, we obtain

L = aE + bF
M = aF + bG
M = cE+dF
N =cF+dG

The above equations are equivalent to the matrix multiplication

(e v )=(ea)(F &)
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which reads
LG;;lA = sz .

Now, notice that
det 9’—1 >0.

Indeed, recall Cauchy-Schwarz inequality:
vov<|vliwl, vv,weR’,

where the inequality is strict if and only if v and w are linearly independent. Since & is
regular, we have that o, and g, are linearly independent. Therefore by Cauchy-Schwarz we
have

0y -0y <loylloyl

and so, squaring both sides,
2 2 2
(o-u : av) < ||6u|| ”o-v" .

Hence
det(#,) = EG — F?

= (o'u ) au) (o-v 'o-v) - (O-u 'Gv)

2 2 2
= loul”loy|” = (64 - 0)" > 0.

2

In particular the matrix & is invertible and thus
A=F'F,,

concluding the proof.

Important

A matrix A € R™" is invertible if and only if det(A) # 0. In such case the inverse A™! is computed via

the formula

1
Al = AT,
derca) <o

where cof(A) is the cofactor matrix of A. For n = 2 the above formula reads:

-1

(fa) (L d)
(o0 )=05 )

If the matrix is diagonal, then
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Notation

In the following we denote the matrix of 7%/, s by the symbol 7.

Example 4.160: Helicoid

The Helicoid is charted by
o(u,v) = (ucos(v),usin(v),Av), u€l0,1],v€[0,4n1),

where A > 0 is a constant, see Figure 4.30. Prove that the matrix of the Weingarten map is

A

0 e —
(uz + /12)1/2

W = /1
(u2 _,_)(2)3/2
Solution. We compute

o, = (cos(v), sin(v), 0)

o, = (—usin(v),u cos(v), A)
o, = (0,0,0)

o,y = (—sin(v), cos(v), 0)

0., = (—ucos(v), —usin(v),0)

from which
E=0,-0,=1
F=0,-0,=0
G=0,0,=u’+1%,

so that the first fundamental form is
E F 1 0
gl_(F G>_<O u2+/12)'

Since &% is diagonal, the inverse is immediately computed

1 0
u? + A2

i i k
o,x0,=| cos(v) sin(v) 0
—usin(v) wucos(v) A

= (Asin(v), —A cos(v), u)

Moreover
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and so

loy <o, = Nu? + A%,

The standard unit normal to o is

o, X0, 1 (Asin(v), —A cos(v),u) .

N = _
loy x o, Jul + )2

Hence

L=06,,-N=0
A

Ju? + A2

M=o, N=-

N=o0,,N=0

and the second funamental form %, is

0 A
_( L M)\ _ u? + A2
me(in )| o
u? + A2
Finally

0 A
_ ! (1) Ju? + A2

0 A 0

( 24 )2 —
! Ju? + A2
Y S
[ (uz _|_/12)1/2

(uz + 12)3/2

Example 4.161
Find the Weingarten matrix of the following surface chart

o(u,v) = (u—v,u+v,u2+vz) .
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12
10 |

oN b O

-1.0
-0.5
0.0

0.5
0.5 1.0
y 1.0 )

Figure 4.30: Plot of Helicoid.

Solution. Start by computing the first fundamental form:

o,=(1,1,2u)

o,=(-1,1,2v)
E=0,-0,=2(1+2u?
F=0,-0,=4uv

G=0,-0,=21+2v?

7 E F\_{(20+2u*) duv
"\ F 6 )\ 4w 2(1 + 2v%)

The determinant of # is

so that

det(F) = 4(1 + 2u% + 2v?)

_ 1 G -F
Fil =
! det(3‘71)< —-F E )

_ 1 14+2v? —2uv
T2+ 2wt +2v2) \ 2wy 1+ 2% )

and therefore
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We now need to compute the second fundamental form

o, =(0,0,2)
o, =(0,0,0)
o,, =(0,0,2)

i j k

o, x0,=1 1 2u

-1 1 2v

=20v-—u,—u—v,1)

1
low x o] =2 (1 + 2u? + 2v?)2

v—u,-u-—v1)

1

(1+2u? + 2v2)2
2

N =

L=0o,,N= -
(1 +2u? + 2v2)2
M=0,,N=0

N=o,,N= 2

1
(1 + 2u? + 212)2

so that

N

()

2 (10)
1\o 1/
2

(1+2u? + 2v2)

The matrix of the Weingarten map is
W =F ' F,

1 <1+2v2 —2uv )

3\ =2 1+ 2u?
(1 + 2u? + 2v2)? w u

4.13 Curvatures

Curvatures of a surface &' are scalars associated to the Weingarten map 7%, . We will define:

« Gaussian curvature

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 276

« Mean curvature
Principal curvatures
« Normal curvature

« Geodesic curvature

4.13.1 Gaussian and mean curvature

The Weingarten map of & encodes the rate of change of the standard unit normal N. We use this map
to produce scalar values, which we call curvatures. The first two curvatures that we consider are called
Gaussian and mean curvatures.

Definition 4.162: Gaussian and mean curvature

Let & be an orientable surface and let 77" denote the matrix of the Weingarten map %, s of § at p. We
define:

« The Gaussian curvature of § at p as

K :=det(®),
« The mean curvature of § at p as

H := % trace(?"),

Notation: Trace of a 2 x 2 matrix

We recall that the trace of a 2 x 2 matrix A is defined as the sum of the diagonal entries, that is,

traceA=a+d, A:(a b).
c d

Remark 4.163

The Gaussian curvature and mean curvature do not depend on the choice of basis of TpoS’ . Indeed, if W
is the matrix of the Weingarten map with respect to the basis {,,,6.,} of T, &, then

det(W) = det(¥), trace(W) = trace(W).

The above is true by a general linear algebra result: The determinant and trace of a matrix
are invariant under change of basis.

Since we have shown that the matrix of the Weingarten map is

W =F\F,,
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we can express K and H in terms of the first and second fundamental forms.

Proposition 4.164

Let & be an orientable surface and o a regular chart at p. Then

K_LN—M2 _ LG - 2MF — NE

EG—-F?’ 2(EG — F?)

Proof

By Theorem 4.159 the matrix of the Weingarten map %), s of § at p is given by

W = gl_lgz .
We have
E F
det(gl):‘ F G ‘:EF—GZ,
L M
det(%):‘ M N ‘:LN—MZ.
By the properties of determinant we get

det(#F) EF-G?’

and therefore

K =det(?') = det (91_1972)

a2
= det(F V) det(F,) = N =M

To compute H we need to find the diagonal entries of 7. Since

o1 G -F
71 _EG—F2<—F E

1 G -F L M
%_EG_FZ(—F E)(M N

we have

From the above we compute

Wi = LG — MF
1 EG—FZ( )

1
EG — F?

Woo = (—MF + EN)

EG-—F2
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Therefore
H = % trace W

1
= 5 (w11 + wap)
_ LG —2MF +EN
2(EG — F?)

Example 4.165: Plane
Consider the plane charted by
o(u,v)=a+pu+qv, uec(0,2r),uveR.

We have already computed in Example 4.106 and Example 4.143 that the first and second fundamental

forms of o are
1 0 00
oL — oL —

Therefore the matrix of the Weingarten map is

0 0
W:%fl,%:(o 0).

Hence the Gaussian curvature is
K=det(')=0,

while the mean curvature is )
H= 2 trace = 0.

Example 4.166: Unit cylinder
Consider the unit cylinder charted by
o(u,v) = (cos(u),sin(u),v), u€(0,2r),veR.

We have already computed in Example 4.107 and Example 4.144 that the first and second fundamental

forms of o are
1 0 -1 0
o  — oL —
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Therefore the matrix of the Weingarten map is

W = F 1 F,
(10 -1 0
~\o 1 0 0
(-1 0
VLo o])"

K=det(')=0,

Therefore the Gaussian curvature is

while the mean curvature is 1 1
H =~ trace % = —-.
2 2

4.13.2 Principal curvatures

Let V be a two-dimensional vector space. For a linear map L: V — V we say that A € R is an eigenvalue of
L with eigenvector v € V if
Lv)=Av, v=#0.

Suppose A € R®? is the matrix of L with respect to a basis {v;, v5} of V. Denote by
x=(Au), v=Aw;+puw,.

the vector of coordinates of v. Then
Av = Av,

meaning that A is an eigenvalue of A with eigenvector x. The eigenvalues of A can be computed by solving
the characteristic equation
P(A) =0, P(A) :=det(A-AD),

where P is the characteristic polynomial of A. Finally, we recall that A € R®? is diagonalizable if there
exists a diagonal matrix D and an invertible matrix P such that

A=PlDP,

Theorem 4.167

Let & be an orientable surface and let 7}, s be the Weingarten map at p. There exist scalars x;,k; € R
and an orthonormal basis {t;, t,} of T, such that

Wos(t) =K1ty Wy s(ty) =Katy.
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Proof

Let o be a chart for & at p. Then {5,,,0.} is a basis of T, & Let 7" be the matrix of %}, s with respect to
such basis. By Theorem 4.159 we have
W = gl_lgz .

o1 G -F
MU T EGop\-F E )

Thus %, ! is symmetric. Since %, is symmetric, and the product of symmetric matrices is symmetric, we
conclude that 77" is symmetric. Therefore 7, 5 is self-adjoint, see Remark 4.15. The thesis now follows
from the Spectral Theorem, see Theorem 4.13.

Recall that

The matrix version of Theorem 4.167 is given in the following Corollary.
Corollary 4.168

Let & be orientable, and let 77" the matrix of the Weingarten map %}, ¢ with respect to the basis {7, 0,}
of Tp§', where o is a regular chart at p. Let k1, k3, t;, t; be as in Theorem 4.167. Let Ay, Ay, p1, piz € R be
such that

ty = Moy + oy,  ty =0, + 1o,

and denote
x; = (A, ), X = A i)
They hold:

« The scalars kq, k, are eingenvalues of 7" of eigenvectors x; and x,, that is,

Wx, =KXy, WXy=KyXs.

+ The matrix 7" is diagonalizable, with

W =PDP, D:<K1 0), P:(’ll AZ).
0 Ky )

Proof

Recall that 7 is the matrix of %}, ¢ with respect to the basis {6, 0} of T;,&'. Therefore, by definition of
X1, Xy we get
Wy st1)=Wxy, Wpsty)=Wx;.

The thesis follows by Theorem 4.167 and the Spectral Theorem for matrices, see Theorem 4.19.

The eigenvalues and eigenvectors of the weingarten map have a name.
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Definition 4.169: Principal curvatures and vectors
Let & be an orientable surface and 7}, ¢ be the Weingarten map of § at p. We define:

« The principal curvatures of & at p are the eigenvalues k1, k; of 7}, .

« The principal vectors corresponding to k; and k, are the eigenvectors t,, t,.

Remark 4.170: Computing principal curvatures and vectors
Corollary 4.168 gives an explicit way to compute the principal curvatures and vectors:
1. Compute the eigenvalues of 7. This is done by solving for k the equation
det(# —xI)=0.
This gives one of the principal curvatures

Ki =K

2. Compute the eigenvector(s) related to the eigenvalue x. This is done by finding scalars A, p which
solve the linear system
A
(W—Klj)( [ ) =0

This gives the eigenvector of 7%
x; = (A p

3. The principal vector associated to x; is

ti = Ao, + o,

Remark 4.171: Computing principal curvatures and vectors
If the matrix of the Weingarten map has the form
_ K1 0
V= ( 0 Ko )
then 7/ is already diagonal. The eigenvalues of 7" are k; and k,, with eigenvectors
x; =(1,0), x,=1(0,1).

Therefore k1, k5 are the principal curvatures, with principal vectors given by

t1:O'u, tzZO'v.
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The principal curvatures are related to the Gaussian and mean curvatures.
Proposition 4.172
Let & be an orientable surface. Then

K1+K2
K:Kle, = .

Proof

By Corollary 4.168 we have

@ =PpP-pp, D:(K1 0 )
0 K2

By the properties of determinant

det (AB) = det(A) det(B), VA,BeR>?.

By definition of Gaussian curvature and the above formula we infer

K = det(?")
= det (P"'DP)
= det(P~1) det(D) det(P)
= det(D)
=K1Kz,
where we also used that 1
det(P7) = ——— .
P = 35

The trace satisfies

trace (AB) = trace (BA), VA,BeR%?.

By definition of mean curvature and the above formula we get
1
H = Etrace(W)
= % trace (P_lDP)
= % trace (PP~'D)
= % trace (D)
-1 (k1 + x9)
5 K1t k2),

concluding the proof.
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Important

In general k; and x, are hard to compute, as they require solving a second order equation. Instead K and
H are easier to compute, as they are directly expressed in terms of the first and second fundamental form
coefficients.

Example 4.173: Unit Cylinder
Consider the unit cylinder charted by
o(u,v) = (cos(u),sin(u),v), u€(0,2r),veR.
We have already computed in Example 4.166 that the matrix of the Weingarten map is
(3 0)
Since 7 is diagonal, the eigenvalues are the diagonal entries of 7 and eigenvectors are
x; =(1,0), x,=1(0,1).
Therefore the principal curvatures are
kK1=-1, K,=0
and the principal vectors are

t; = o, = (—sin(u), cos(v),0),
t, =0, =(0,0,1),

as shown in Figure 4.31.

Example 4.174: Sphere
Consider the chart for the sphere

o(u,v) = (cos(u) sin(v), sin(u) sin(v), cos(v))
Prove that

.2
sin“(v) 0 1 0

and
K:H:K1:K2:1, tlzau, tzZO'v.
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/ l:ﬁ ==
\ {:7' N (—‘Sinm" Cotlu), o)
_ — — - — - ~ {:?_20_\,- =(0)0)4.)
/ ™
_—
P ks
/ - TS

Figure 4.31: Principal vectors of the unit cylinder.

Solution. We compute

o, = (—sin(u) sin(v), cos(u) sin(v), 0)

o, = (cos(u) cos(v), sin(u) cos(v), — sin(v))
E=0, 06, =sin’(v)
F=0,-0,=0

G=0,0,=1

and therefore the first fundamental form is

F = ( sin(Z)(v) (1) ) .
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Moreover
i i k
o,%x0,=| —sin(u)sin(v) cos(u)sin(v) 0
cos(u) cos(v) sin(u)cos(v) —sin(v)
= (= cos(u) sin®(v), — sin(x) sin®(v), — cos(v) sin(v))
loy x o] = |sin(v)|
N = (= cos(u) sin(v), — sin(u) sin(v), — cos(v))
0, = (—cos(u) sin(v), — sin(u) sin(v), 0)
0,y = (—sin(u) cos(v), cos(u) cos(v), 0)
0., = (—cos(u) sin(v), — sin(u) sin(v), — cos(v))
L=0,, N = sin’(v)
M=0,,N=0
N=¢,,N=1

so that the second fundamental form is

F, = ( sin(z)(v) (1) ) ‘

In particular the matrix of the Weingarten map is

W:gvl—l%:(é 2)

Since 7 is diagonal, the principal curvatures are
K1 =ky =1
and the principal vectors
ty=0,, t,=o0,.

Finally, we have that
. K1 + Ko .

1, K=kKxky=1.
5 1K2

Example 4.175: Torus

Consider a circle € contained in the xz-plane, with center at distance b > 0 from the z-axis and radius a,
with 0 < a < b. The torus is obtained by rotating € around the z-axis. This surface is charted by

0(0,9) = ((a+ bcos(0)) cos(¢), (a + bcos(0)) sin(¢p), b sin(6)) ,

where 0 € (—n/2,7/2) and ¢ € (0,27). One can compute that the first and second fundamental forms
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are

o (P 0
71 _< 0 (a+bcos(0))2 )

b 0
Fy = ( 0 (a+bcos(0)) cos(6) ) |

Therefore the matrix of the Weingarten map is

1
b 0
W =F '\ Fp = 0 cos(0)
a+ bcos(0)
Since 7" is diagonal, the principal curvatures are
1 cos(0)

=y e a+bcos(d)’

and the principal vectors
tl =0y, t2 =0y.
The Gaussian and mean curvature are
cos(6)
b(a + bcos(9))
ki +k;  a+2bcos(0)
2 2b(a+bcos(d)

K =Ky =

H =

4.13.3 Normal and geodesic curvatures
Let & be a regular surface and consider all the curves y on & passing through the point p € §.
Question 4.176

Which curves through p have greatest or lowest curvature?

We start our analysis with the following proposition.
Proposition 4.177
Let & be a regular surface andy : (a,b) — & be a unit speed curve. Then

¥, N, N xy}
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is an orthornormal basis of R3 for all ¢ € (a,b), where N is the standard unit normal to & evaluated at
p=y®.

Proof
By definition
YO eL,s, p:=y@),
for all t € (a,b). This means y is tangent to &. Thus
y-N=o0.

We have |y| = 1 since y is unit speed. Moreover |[N| = 1 by definition. Since y and N are orthogonal, we
also obtain
INxyl=INllyl=1,

by the properties of vector product. Finally
(Nxy)-N=0, (Nxy)-y=0,

by the properties of vector product.

Important

Notice that the basis
{y.N,N xy}

does not coincide with the Frenet frame of y in general.

Proposition 4.178

Let & be a regular surface andy : (a,b) - & be a unit speed curve. Then

V=K N+x; Nxy), (4.12)

where N is evaluated at p : = y(t) and k,, k, are scalars depedent on p. Moreover

kn=V N, Kkg=y -(Nxy), (4.13)
K% = K2 + Kﬁ, (4.14)
Kp = kcos($), kg = +Ksin(g), (4.15)

where « is the curvature of y and ¢ is the angle between N and n, the principal unit normal of y.
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Proof

Part 1. By Proposition 4.177 we know that
. N, N xy}

is an orthornormal basis of R3. Hence

Yy=ay +bN+c(Nxy),
for some coefficients a, b, c € R. Since y is unit speed, we have that
vi=0.

On the other hand,
y ¥v=aly y)+by -N)+cy - (Nxy)=a,

since y is orthogonal to N and N xy, and

.. .12
vy=wl"=1
Therefore a = 0 and
y=ON+c(Nxy).
Setting x, :=b and k, := ¢ we conclude (4.12).
Part 2. Taking the scalar product of (4.12) with N yields
, 2 .
Y -N=x N["+x, (Nxy)-N=k,,

where we used that N and N x y are orthonormal vectors. Similarly, taking the scalar product of (4.12)
with N x y yields the second equation in (4.13).
Part 3. By (4.12) we infer

.12 2 . .2
717 = r7 INI” + 2k, N - (N x ) + &5 [N x ¥

= Kp + K,

where we used that N and N x y are orthonormal. Since x(t) = |y(t)], we get (4.14).
Part 4. Recalling that

Y =kn,
from the first equation in (4.13) we obtain
Ky =7-N
=xn-N
= kn|?INJ? cos($)
= kcos(@),
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where we used that n and N have unit norm. Hence the first equation in (4.15) is established. By (4.14)
we get

Kf, =K% — K2
= k% cos?(¢) — K2
= k?(cos?(¢) — 1)
= k% sin*(¢$),

from which we obtain the second equation in (4.15).

The quantities x, and k, are the normal and geodesic curvatures of y.
Definition 4.179: Normal and geodesic curvature
Let & be regular andy : (a,b) = & a unit speed curve. By (4.12) we have
¥ = KkaN + k(N xy)

for N the standard unit normal to & and scalars k;,, Ky € R. We call

+ Kk, the normal curvature ofy,
* Ky the geodesic curvature of y.

The normal curvature k, can be computed via the second fundamental form, as shown in the theorem below.
Theorem 4.180

Let & be a regular surface andy : (a,b) — & a unit speed curve. Denote p : = y(t). We have:

1. The normal curvature k,, satisfies
Kn = 1p(y.y)-

2. Let o be a chart for & at p. Then
Y(®) = o (u(®), v(t))

for some smooth functions u,v : (a,b) > R, and

K, = Lu® + 2Muv + Nv2 .

Proof

Part 1. By definition we have
y®) eT,S$
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when p = y(¢). Set

y@® :=N{y(®). (4.16)
By definition of differential we have
dNF(©) =y(1). (4.17)
Note that
r@® -y =0,

since N is normal to & at p and y(t) € Tp(S). Differentiating the above expression we get

_d oy

0=— (40 y(t?)
=y®)-y(®) +y@®) -y(@®)
=N(y®) -7(t) + dpNF(®) - y(t)

where in the last equation we used (4.16) and (4.17). Hence

—dpN({y®)) -y(®) = Ny (1)) - ¥(1) . (4.18)
By definition of Weingarten and Gauss map we get
Wiy s (1) = ~dp T (D) = —dpNG (D). (4.19)

Therefore, using (4.18) and (4.19), we infer
LG, 70) = Wy s GO) - 7
— —d,NG(®) - ®)
=Ny@®)-y(®)

=K,

where in the last equality we used (4.13).
Part 2. Let o be a chart at p and

Y(@®) = o(u@®),v(®)).

Differentiating the above expression we get
y(@®) = uo, + vo, .
By definition of du and dv, see Definition 4.101, we have
du(y(®)) = u(t), dv(y(®) = Q).

Therefore, using Part 1 and Theorem 4.156, we obtain

Kn = I,y (1), y(t))
= Ldu(y(1))* + 2Mdu(y(t))dv(y (1)) + Ndv(y(t))*
= Lu? + 2Muv + Nv2 .
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Example 4.181: Curves on the sphere
Consider the chart for the sphere
o(u,v) = (cos(u) sin(v), sin(u) sin(v), cos(v))

Show that
Kn(t) =1

for all unit speed curves on the sphere.
Solution. We have computed in Example 4.174 that the second fundamental form of ¢ is
Fo = sinz(v)du2 + dv?
Let y be a unit speed curve on the sphere, that is,
y(@) = o(u(), v(t)). (4.20)
By Theorem 4.180 the normal curvature of y is
Kp = sin®(v)i? + 2.

Differentiating (4.20) we get

Y@ = %(cos(u(t)) sin(v(t)), sin(u(t)) sin(v(t)), cos(v(t)))
= (—usin(u) sin(v) + v cos(u) cos(v), 1 cos(u) sin(v)+
v sin(u) cos(v), —v sin(v))
so that
[y @I = sin*(v)i? +v*.

Since y is unit speed, we also get
vl? =1,

showing that
Ky = sinz(v)u2 +v2 =1,

as required.

The normal curvature k,, is related to the principal curvatures k; and k.
Theorem 4.182: Euler’s Theorem

Let & be a regular surface and denote by k4, k, the principal curvatures with principal vectors ty, t,. Let
y be a unit speed curve on §. The normal curvature of y is given by

K, = k1 cos?(6) + Ky sin?(0),
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where 6 is the angle between y and t;.

Proof

Let y be a unit speed curve on & and set
p:=vQ®).

By Theorem 4.167 the principal vectors {t;, t,} form an orthonormal basis of T,&§. Since by definition
Y €TS8,

there exist scalars A, p € R such that
y() = Aty + pty.
Asy is unit speed and t;, t; orthonormal, we infer
N2 e
1=ly®I" =y -y =2+ 4%
Therefore there exists 0 € [0, 27r] such that
A =cos(0), p=sin(6).

Hence

y(@) = cos(0)t; + sin(O)t, . (4.21)
In particular, we can take the scalar product of (4.21) with t; to get
cos() =A=y@) t;.

Since y and t; are unit vectors, from the above equation we conclude that 0 is the angle between y and
t;. In addition, recall that

Wy, st) =K1ty,  Wps(ty) =Koty
and ty, t, are orthonormal. Thus
2
Hp(ty,t) = Wp s (t) -t = kq Jt1]” =1
p(ty,t) = Wp s(t) -ty =Kty £, =0
Iyt t)) = Wp s(ty) -ty =Koty - £, =0

2
Ity ty) = Wp s(ty) -ty =K to]” =Kz

By Theorem 4.180, equation (4.21), and bilinearity of I Ip, we get
Kn = IIp(Y»Y)
= cos?(0) IIp(t1, 1) + cos(0) sin(0) I1,(t;, t3)
+ sin(0) cos(0) I,(ty, t;) + sin®(0) 1T, (ty, to)
= cos?(Q)k; + sinz(Q)Kz

ending the proof.
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As an immediate corollary of the Euler’s Theorem we get the next statement.
Corollary 4.183

Let & be a regular surface and ky, k, its principal curvatures at p with principal vectors t;, t,. Then:

+ k1 and k, are the minimum and maximum values of k,, for all unit speed curves on & passing

through p.

« The directions of lowest and highest curvature on & are given by t; and t,.

In Example 4.181 we have shown with a direct argument that
Kp=1

for all unit speed curves on the sphere. Thanks to Euler’s Theorem we can obtain an immediate proof of this
fact.

Example 4.184: Curves on the sphere
Let us consider again the chart for the sphere
o(u,v) = (cos(u) sin(v), sin(u) sin(v), cos(v))
as seen in Example 4.181. By Example 4.174, the principal curvatures of o are
Ki =Ky =1.
By Euler’s Theorem, for any curve y on the sphere we have

K, = Ky cos?(0) + Ky sin?(0) = 1.

4.13.4 Local shape of a surface

The principal curvatures k; and k, determine the maximum and minimum curvature of a surface &, see
Corollary 4.183. Hence we can study the local shape of & in function of k; and ;.

Theorem 4.185: Local structure of surfaces

Let § be a regular surface and p € §. In the vicinity of p the surface & is approximated by the quadric
surface of equation

z= % (xzicl(p) + yZKZ(p)) , (4.22)

where k;(p), k2(p) are the principal curvatures of & at p.
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Proof

By Theorem 4.167 the principal vectors {t;, t,} are an orthonormal basis of T,§". Therefore the standard
unit normal N at p is orthogonal to both t; and t,. Up to rotations and translations, we can assume
WLOG that p =0 and

t; =(1,0,0), t;,=(0,1,0), N =1(0,0,1). (4.23)

Let o be a chart for & at p. Up to reparametrizing, we can assume that
0(0,0)=p=0.
As N = (0,0, 1), it follows that TpoS’ is the xy-plane
T,$ = R% = {(x,7,0) : x,y €R}.
Since {6,,0,} is a basis for T,S, we have that for each (x,y) € R? there exist (s, ) € R? such that
(x,9,0) =so, +to,, (4-24)
where ¢, and g, are evaluated at (0,0). The Taylor approximation of ¢ at (0, 0) is

o(s,t) =0(0,0) + so,, + to,,

1
+3 (s%0yy + 2sto,, + t?0.,) + R,
1
=(x,y,0) + 2 (szauu + 2sto,,, + tzaw) +R

where R is a remainder and the derivatives of o are evaluated at (0, 0). Hence, if x, y are small (and thus
s, t are small), we have that

o(s.t) = (x,y,2)

where
z = % (szauu + 2sto,, + tzaw) ‘N
= % (Ls* + 2Mst + Nt?) ,
with L, M, N coefficients of the second fundamental form of ¢ at (0, 0). Set
v:=so,+10,.

By Theorem 4.156 we have

Ls® + 2Mst + Nt? = I, (v,v) =Wy 5(V) - v.
On the other hand, using (4.23) and (4.24) we get

v=s0,+t0,=(x,90)=xt; +yt,.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 295

Since the Weingarten map is linear we get

Wy, s(V) = xWp (1) + yWp 5(t2)
= X'K'ltl + sztz s

where we used that t; and t, are eigenvectors of 7}, s with eigenvalues k; and k,. Hence

Wp,s(V) - v = xK1t; + Yoty - (xty + ytp)

= X2K1 + y2K2

Therefore
z= % (Ls2 + 2Mst + Ntz)
1

= EWP’S(V) -V

= %(szl + yzkz) 5
showing that

o(t,s) = (x, Vs % (lecl + y2K2)> )
Thanks to Theorem 4.185 we can distinguish between 4 approximating shapes.

Definition 4.186: Local shape types

Let & be a regular surface and denote by k;(p) and x,(p) its principal curvatures at p. The point p is

Elliptic if
ki(p) >0, Kk(p) >0 or xi(p)<O0,Ky(p)<0
Then (4.22) is the equation of an elliptic paraboloid.

Hyperbolic if
k1(p) <0 <Kkz(p) or Ky(p) <0 <ki(p)

Then (4.22) is the equation of a hyperbolic paraboloid.

Parabolic if

ki(p)=0,Kk(p) =0 or ky(p)#0,k(p)=0

Then (4.22) is the equation of a parabolic cylinder.

Planar if
k1 (p) =x2(p) =0

Then (4.22) is the equation of a plane.
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7 D

ELLIPTIC HYPERRoLIC

Ka,k;, >0 F140 ¢ g,
oR oR

F1,E2 <0 Fa<0 < ky

QS =

PARAROLIC
Pran
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Example 4.187

Consider the surface chart
o(u,v) = (u—v,u+v,u2 +vz) .

Show that p = 6(1,0) is an elliptic point. Therefore ¢ is approximated by an elliptic paraboiloid in the
vicinity of p.

Solution. In Example 4.161 we have shown that the Weingarten matrix of o is

1 1+2v2 —2uv

W = ( 2 ) .
(14 2u? + 2v2)§ —2uv 1+ 2u

Foru = 1 and v = 1 we obtain

3
10 377 0
W:i< ):( 1).
5o 3 -1
32 0 3 2

Therefore the principal curvatures at p are

3

_3 _1
kip)=3 2, Ky(p)=3 2.

Since x;(p) > 0 and x,(p) > 0 we have that p is an elliptic point.

4.13.5 Umbilical points

Definition 4.188: Umbilical point

Let & be a regular surface and denote by x;(p) and k,(p) its principal curvatures at p. We say that p is
an umbilic if

x1(p) = x2(p).

Remark 4.189

Umbilical points might be planar or elliptic.

Suppose that p is an umbilic, that is,
K1 = K2

at p. Let x,, be the normal curvature of a unit speed curve y passing through p. By Theorem 4.182 we have
K, = Kk cos2(0) + Kk, sin?(0) = x; .

Therefore x,, does not depend on y. Intuitively, this can only happen if in the vicinity of p the surface looks
like a sphere or a plane. Indeed, the following theorem holds.
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Theorem 4.190

Let & be a regular surface such that every point p € & is umbilic. Then & is an open subset of plane or
a sphere.

Proof

By assumption we have
k1(p) = io(p) = k(p), VpedS. (425)
Step 1. x is constant.
By Theorem 4.167 the principal vectors {t, t,} are an orthonormal basis of T,&§. Hence, for each v € T, &
there exist A, z € R such that
v =AMy + oty

Using the linearity of %}, ¢ and (4.25) we obtain
Wy, s(v) = AW 5(t1) + 4Wp 5 (t2)

= Akt + pxty
=KV,
showing that
Wy s(V)=kv, VVET,S. (4.26)

Leto : U — R3 be a chart of &. Up to restricting &, we can assume that U is connected. By Lemma 4.158
we have

cWp,é’(o-u) =-Ny, <Wp,é’(o-v) =-N,.
On the other hand, by (4.26) we infer
Wp,é’(o'u) =Koy, Wp,é’(av) =KOy,

from which

N, =-«xo,, N,=-xo,. (4.27)
Thus
(ko )y = = (Ny)y = —(Ny), = (ko) -
Moreover
(k0,)y = KOy + KOy
(K0,)y = KyOy + KOy
so that

KyOy = K0, . (4.28)
Recall that o, and o, are linearly independent, being & regular. Hence the linear combination at (4.28)
must be trivial, implying

K, =k, =0.
Since U is connected, the above implies that k is constant.
Step 2. We have the two cases ¥k = 0 and k # 0.
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« Assume k = 0. By (4.27) we get that

which implies N is constant. Therefore
N-6),=N,-6+N-0,=0
since N, = 0 and N - 6, = 0 because N is orthogonal to T,,&'. Similarly we get
(N-0), =0,
showing that N - o is constant. Hence there exists ¢ € R such that
N-o(u,v)=c, V(uv)eU.
This shows a(U) is contained in the plane

r={xeR: N-x=c}.

« Assume k # 0. Condition (4.27) implies
N=-xo+a

for some a € R? constant vector. Thus
2 2
1 1 1
K K K

given that |[N| = 1. Therefore 6(U) is contained in the sphere of center a/k and radius 1/x.
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5 Plots with Python

5.1 Curves in Python

5.1.1 Curves in 2D

Suppose we want to plot the parabola y = t? for ¢ in the interval [-3,3]. In our language, this is the two-
dimensional curve

Y@ =@1?), te[-33].

The two Python libraries we use to plot y are numpy and matplotlib. In short, numpy handles multi-
dimensional arrays and matrices, and can perform high-level mathematical functions on them. For any ques-
tion you may have about numpy, answers can be found in the searchable documentation available here. In-
stead matplotlib is a plotting library, with documentation here. Python libraries need to be imported every
time you want to use them. In our case we will import:

import numpy as np
import matplotlib.pyplot as plt

The above imports numpy and the module pyplot from matplotlib, and renames them to np and plt,
respectively. These shorthands are standard in the literature, and they make code much more readable.
The function for plotting 2D graphs is called plot (x,y) and is contained in p1t. As the syntax suggests, plot
takes as arguments two arrays

x=[xn,nx], Y=l

As output it produces a graph which is the linear interpolation of the points (x;, ;) in R?, that is, consecutive
points (x;,3;) and (x;,1, J44+;) are connected by a segment. Using plot, we can graph the curve y(t) = (¢,t%)
like so:

# Code for plotting gamma

import numpy as np
import matplotlib.pyplot as plt

# Generating array t
t = np.array([-3,-2,-1,0,1,2,3])

300
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# Computing array f
f = t*x%2

# Plotting the curve
plt.plot(t,f)

# Plotting dots
plt.plot(t,f,"ko")

# Showing the plot
plt.show()

Let us comment the above code. The variable t is a numpy array containing the ordered values
t=[-3,-2,-1,0,1,2,3]. (5.1)

This array is then squared entry-by-entry via the operation t **2 and saved in the new numpy array f, that
is,
f=19,4,1,0,1,4,9].

The arrays t and f are then passed to plot(t, f), which produces the above linear interpolation, with t on
the x-axis and f on the y-axis. The command plot(t,f, 'ko") instead plots a black dot at each point (%, f;).
The latter is clearly not needed to obtain a plot, and it was only included to highlight the fact that plot is
actually producing a linear interpolation between points. Finally plt.show() displays the figure in the user
window".

Of course one can refine the plot so that it resembles the continuous curve y(t) = (¢,t?) that we all have
in mind. This is achieved by generating a numpy array t with a finer stepsize, invoking the function

“The command plt.show() can be omitted if working in Jupyter Notebook, as it is called by default.
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np.linspace(a,b,n). Such call will return a numpy array which contains n evenly spaced points, starts at
a, and ends in b. For example np. linspace(-3,3,7) returns our original array t at 5.1, as shown below

# Displaying output of np.linspace
import numpy as np

# Generates array t by dividing interval
# (-3,3) in 7 parts

t = np.linspace(-3,3, 7)

# Prints array t

print("t =", t)

t = [-3. -2. -1. 0. 1. 2. 3.]

In order to have a more refined plot of y, we just need to increase n.

# Plotting gamma with finer step-size

import numpy as np
import matplotlib.pyplot as plt

# Generates array t by dividing interval
# (-3,3) in 100 parts

t = np.linspace(-3,3, 100)

# Computes f

f = t*%2

# Plotting

plt.plot(t,f)

plt.show()
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We now want to plot a parametric curvey : (a,b) — R? with

y(®) = (x(), y(©).

Clearly we need to modify the above code. The variable t will still be a numpy array produced by linspace.
We then need to introduce the arrays x and y which ecode the first and second components of y, respectively.

import numpy as np
import matplotlib.pyplot as plt

# Divides time interval (a,b) in n parts

# and saves output to numpy array t

t = np.linspace(a, b, n)

# Computes gamma from given functions x(y) and y(t)
x = x(t)

y = y(t)

# Plots the curve
plt.plot(x,y)

# Shows the plot
plt.show()

We use the above code to plot the 2D curve known as the Fermat’s spiral

y® = (Vtcos(t),Vtsin(t)) for t€[0,50]. (5.2)
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# Plotting Fermat's spiral

import numpy as np
import matplotlib.pyplot as plt

+H

Divides time interval (0,50) in 500 parts
= np.linspace(0, 50, 500)

—+

3+

Computes Fermat's Spiral
= np.sqrt(t) * np.cos(t)
y = np.sqrt(t) * np.sin(t)

o

# Plots the Spiral

plt.plot(x,y)
plt.show()

Before displaying the output of the above code, a few comments are in order. The array t has size 500, due
to the behavior of linspace. You can also fact check this information by printing np.size(t), which is the
numpy function that returns the size of an array. We then use the numpy function np. sqrt to compute the
square root of the array t. The outcome is still an array with the same size of t, that is,

t=[t,...t,] = Nt=[Jh, ..t
Similary, the call np.cos(t) returns the array
cos(t) = [cos(ty), ..., cos(t,)].

The two arrays np.sqrt(t) and np.cos(t) are then multiplied, term-by-term, and saved in the array x. The
array y is computed similarly. The command plt.plot(x,y) then yields the graph of the Fermat’s spiral:
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Figure 5.1: Fermat’s spiral

The above plots can be styled a bit. For example we can give a title to the plot, label the axes, plot the spiral
by means of green dots, and add a plot legend, as coded below:

# Adding some style

import numpy as np
import matplotlib.pyplot as plt

Computing Spiral

= np.linspace(0, 50, 500)
= np.sqrt(t) * np.cos(t)
= np.sqrt(t) * np.sin(t)

< X ot =

# Generating figure
plt.figure(1, figsize = (4,4))

# Plotting the Spiral with some options
plt.plot(x, y, '--', color = 'deeppink', linewidth = 1.5, label = 'Spiral')

# Adding grid
plt.grid(True, color = 'lightgray')

# Adding title
plt.title("Fermat's spiral for t between 0 and 50")

# Adding axes labels
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plt.xlabel("x-axis", fontsize = 15)
plt.ylabel("y-axis", fontsize 15)

# Showing plot legend
plt.legend()

# Show the plot
plt.show()

Fermat's spiral for t between 0 and 50
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Figure 5.2: Adding a bit of style

Let us go over the novel part of the above code:

« plt.figure(): This command generates a figure object. If you are planning on plotting just one figure
at a time, then this command is optional: a figure object is generated implicitly when calling p1t.plot.
Otherwise, if working with n figures, you need to generate a figure object with p1t.figure(i) for each
i between 1 and n. The number i uniquely identifies the i-th figure: whenever you call plt.figure(i),
Python knows that the next commands will refer to the i-th figure. In our case we only have one figure,
so we have used the identifier 1. The second argument figsize = (a,b) in plt.figure() specifies
the size of figure 1 ininches. In this case we generated a figure 4 x 4 inches.

+ plt.plot: Thisis plotting the arrays x and y, as usual. However we are adding a few aestethic touches:
the curve is plotted in dashed style with --, in deep pink color and with a line width of 1.5. Finally this
plot is labelled Spiral.
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o plt.grid: This enables a grid in light gray color.

plt.title: This gives a title to the figure, displayed on top.

« plt.xlabel and plt.ylabel: These assign labels to the axes, with font size 15 points.

plt.legend(): This plots the legend, with all the labels assigned in the plt.plot call. In this case the
only label is Spiral.

Matplotlib styles

There are countless plot types and options you can specify in matplotlib, see for example the Mat-
plotlib Gallery. Of course there is no need to remember every single command: a quick Google search
can do wonders.

Generating arrays

There are several ways of generating evenly spaced arrays in Python. For example the function
np.arange(a,b,s) returns an array with values within the half-open interval [a, b), with spacing
between values given by s. For example

import numpy as np

t = np.arange(0,1, 0.2)
print("t =",t)

t = [0. 0.2 0.40.60.8]

5.1.2 Implicit curves 2D

A curve y in R? can also be defined as the set of points (x, y) € R? satisfying

fy)=0

for some given f : R?> — R. For example let us plot the curve y implicitly defined by
fley) = (3x" = yH? y? = (x* +yH)*

for —1 < x,y < 1. First, we need a way to generate a grid in R? so that we can evaluate f on such grid. To
illustrate how to do this, let us generate a grid of spacing 1 in the 2D square [0, 4]?. The goal is to obtain the
5 X 5 matrix of coordinates
(0,0) (1,0) (2,0) (3,0) (4,0)
(0,1) (1,1) (2,1) (3,1) 41
A=1(0,2) (1,2) (2,2) (2,3) (2,4)
(0,3) (1,3) (2,3) (3,3) (3,49
(0,4) (1,4) (2,4) (3,49 4.4)

which corresponds to the grid of points
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Figure 5.3: The 5 x 5 grid corresponding to the matrix A

To achieve this, first generate x and y coordinates using

x = np.linspace(0, 4, 5)
np.linspace(0, 4, 5)

&g
I}

This generates coordinates
x=1[0,1,2,3,4], y=1[01,23,4].

We then need to obtain two matrices X and Y: one for the x coordinates in A, and one for the y coordinates
in A. This can be achieved with the code

X[0,0] =
X[0,1] =
X[0,2] =
X[0,3] =
X[0,4] =
X[1,0] =
X[1,1] =

= O B W N RO

x[4,3] = 3
x[4,4] = 4
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and similarly for Y. The output would be the two matrices X and Y

012 3 4 00 00O
012 3 4 11111

X = 01 2 3 4|’ Y=12 2 2 2 2
012 3 4 53333

4 4 4 4 4

If now we plot X against Y via the command

plt.plot(X, Y, 'k.")

we obtain Figure 5.3. In the above command the style 'k.' represents black dots. This procedure would
be impossible with large vectors. Thankfully there is a function in numpy doing exactly what we need:
np.meshgrid.

# Demonstrating np.meshgrid
import numpy as np

# Generating x and y coordinates
xlist = np.linspace(0, 4, 5)

ylist = np.linspace(0, 4, 5)

# Generating grid X, Y
X, Y = np.meshgrid(xlist, ylist)

# Printing the matrices X and Y
# np.array2string is only needed to align outputs

print('X ="', np.array2string(X, prefix='X= "))
print('\n")
print('Y ="', np.array2string(Y, prefix='Y= "))

X = [[0. 1. 2. 3. 4.]
[0.
[0.
[0.
[0.

O Sy
NI ORI ORI O
W W W W
R

—_— e e

Y = [[0. 0. 0. 0. 0.]
[1.
[2.
[3.
[4.

B W N -
BN W N -
B W N -
B W N -
Ll L
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Now that we have our grid, we can evaluate the function f on it. This is simply done with the command

7 :((3*(X**2) = Y**Z)**Z)*(Y**Z) = (X**Z o Y**Z)**4

This will return the matrix Z containing the values f(x;, y;) for all (x;,y;) in the grid [X,Y]. We are now
interested in plotting the points in the grid [X, Y] for which Z is zero. This is achieved with the command

plt.contour(X, Y, Z, [0])

Putting the above observations together, we have the code for plotting the curve f = 0for -1 < x,y < 1.
# Plotting f=0

import numpy as np
import matplotlib.pyplot as plt

# Generates coordinates and grid
xlist = np.linspace(-1, 1, 5000)
ylist = np.linspace(-1, 1, 5000)
X, Y = np.meshgrid(xlist, ylist)

# Computes f
Z =((3%(X*%2) - Y**2)*%x2)*%(Y*%2) - (X**2 + Y*%2)*%4

# Creates figure object
plt.figure(figsize = (4,4))

# Plots level set Z = 0
plt.contour(X, Y, Z, [0])

# Set axes labels
plt.xlabel("x-axis", fontsize = 15)
plt.ylabel("y-axis", fontsize = 15)

# Shows plot
plt.show()
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Figure 5.4: Plot of the curve defined by f=o0

5.1.3 Curvesin 3D

-0.5

010
X-axis

0.5

1.0

Plotting in 3D with matplotlib requires the mplot3d toolkit, see here for documentation. Therefore our first

lines will always be
# Packages for 3D plots
import numpy as np

import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

We can now generate empty 3D axes

# Generates and plots empty 3D axes
import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

# Creates figure object
fig = plt.figure(figsize = (4,4))

Dr. Silvio Fanzon
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# Creates 3D axes object
ax = plt.axes(projection = '3d')

# Shows the plot
plt.show()

r 1.0
- 0.8
- 0.6
- 0.4
r 0.2
= 0.0

1.0
0.8
0.6

0.4

0.2

08 . 00

0.0
0.2

0.4
0.6

In the above code fig is a figure object, while ax is an axes object. In practice, the figure object contains the
axes objects, and the actual plot information will be contained in axes. If you want multiple plots in the figure
container, you should use the command

ax = fig.add_subplot(nrows = m, ncols = n, pos = k)

This generates an axes object ax in position k with respect to am x n grid of plots in the container figure.
For example we can create a 3 x 2 grid of empty 3D axes as follows

# Generates 3 x 2 empty 3D axes
import numpy as np
import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

# Creates container figure object
fig = plt.figure(figsize = (6,8))
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# Creates 6 empty 3D axes objects
axl = fig.add_subplot(3, 2, 1, projection = '3d'")
ax2 = fig.add_subplot(3, 2, 2, projection = '3d'")
ax3 = fig.add_subplot(3, 2, 3, projection = '3d")
ax4 = fig.add_subplot(3, 2, 4, projection = '3d")
ax5 = fig.add_subplot(3, 2, 5, projection = '3d")
ax6 = fig.add_subplot(3, 2, 6, projection = '3d")
# Shows the plot
plt.show()
1.00 1.00
0.75 0.75
0.50 0.50
0.25 0.25
0.00 0.00
1.00 1.00
0.0 ()ggs 0.0 ()gJS
3 23 5 0.25 J 23 5 0. 25
.7 .7
73 00.00 3.000-00
1.00 1.00
0.75 0.75
0.50 0.50
0.25 0.25
0.00 0.00
1.00 1.00
o3 o3
0.0 . 0.0
3 23 5 0.25 J 23 5 0. 25
%7 %7
73 00.00 3.000.00
1.00 1.00
0.75 0.75
0.50 0.50
0.25 0.25
0.00 0.00
1.00 1.00
o35° o35°
0.0 0.0
3 23 5 0.25 2. 235 0. 25
.7 .7
73 00.00 3.000.00
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We are now ready to plot a 3D parametric curve y : (a,b) — R> of the form

Y@ = (x@), (1), z(1))

with the code
# Code to plot 3D curve

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Generates figure and 3D axes
fig = plt.figure(figsize = (sizel,size2))
ax = plt.axes(projection = '3d')

# Plots grid
ax.grid(True)

# Divides time interval (a,b)
into n parts and saves them in array t
= np.linspace(a, b, n)

+ FH*

Computes the curve gamma on array t
for given functions x(t), y(t), z(t)
= x(t)
= y(t)
= z(t)

N < X H =

# Plots gamma
ax.plot3D(x, y, z)

# Setting title for plot
ax.set_title('3D Plot of gamma')

# Setting axes labels
ax.set_xlabel('x', labelpad 'p')
ax.set_ylabel('y', labelpad 'p')
ax.set_zlabel('z', labelpad = 'p')

# Shows the plot
plt.show()

For example we can use the above code to plot the Helix

x(t) = cos(t), y(t)=sin(t),

z(t) =t

(5.3)
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fort € [0, 6r].

# Plotting 3D Helix

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Generates figure and 3D axes
fig = plt.figure(figsize = (4,4))

ax = plt.axes(projection = '3d')

# Plots grid
ax.grid(True)

# Divides time interval (0,6pi) in 100 parts

t = np.linspace(0, 6*np.pi, 100)
# Computes Helix

X = np.cos(t)

y = np.sin(t)

z =t

# Plots Helix - We added some styling

ax.plot3D(x, y, z, color = "deeppink", linewidth = 2)

# Setting title for plot
ax.set_title('3D Plot of Helix')

# Setting axes labels

ax.set_xlabel('x', labelpad = 20)
ax.set_ylabel('y', labelpad = 20)
ax.set_zlabel('z', labelpad = 20)

# Shows the plot
plt.show()
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3D Plot of Helix
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We can also change the viewing angle for a 3D plot store in ax. This is done via

ax.view_init(elev = e, azim = a)

which displays the 3D axes with an elevation angle elev of e degrees and an azimuthal angle azim of a
degrees. In other words, the 3D plot will be rotated by e degrees above the xy-plane and by a degrees around
the z-axis. For example, let us plot the helix with 2 viewing angles. Note that we generate 2 sets of axes with
the add_subplot command discussed above.

# Plotting 3D Helix

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Generates figure object
fig = plt.figure(figsize = (4,4))

# Generates 2 sets of 3D axes
axl = fig.add_subplot(1l, 2, 1, projection = '3d'")
ax2 = fig.add_subplot(1l, 2, 2, projection = '3d'")

# We will not show a grid this time
ax1l.grid(False)
ax2.grid(False)
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# Divides time interval (0,6pi) in 100 parts

t = np.linspace(0, 6*np.pi, 100)
# Computes Helix

X = np.cos(t)

y = np.sin(t)

z =t

# Plots Helix on both axes
axl.plot3D(x, y, z, color = "deeppink", linewidth = 1.5)
ax2.plot3D(x, y, z, color = "deeppink", linewidth = 1.5)

# Setting title for plots
axl.set_title('Helix from above')
ax2.set_title('Helix from side')

# Changing viewing angle of axl1
# View from above has elev = 90 and azim = 0
axl.view_init(elev = 90, azim = 0)

# Changing viewing angle of ax2
# View from side has elev = 0 and azim = 0
ax2.view_init(elev = 0, azim = 0)

# Shows the plot
plt.show()

Helix from above Helix from side
-1 0 1 0
-1

0 10

5.1.4 Interactive plots

Matplotlib produces beautiful static plots; however it lacks built in interactivity. For this reason I would
also like to show you how to plot curves with Plotly, a very popular Python graphic library which has built
in interactivity. Documentation for Plotly and lots of examples can be found here.
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5.1.4.1 2D Plots

Say we want to plot the 2D curvey : (a,b) — R? parametrized by

y(@® = (x@®), y(1).

The Plotly module needed is called graph_objects, usually imported as go. The function for line plots is
called scatter. For documentation and examples see link. The code for plotting y is as follows.

# Plotting gamma 2D

# Import libraries
import numpy as np
import plotly.graph objects as go

# Compute times grid by dividing (a,b) in
# n equal parts

t = np.linspace(a, b, n)

# Compute the parametric curve gamma

# for given functions x(t) and y(t)

x = x(t)

y = y(t)

# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
data = go.Scatter(x = x, y =y, mode = 'lines', name = 'gamma')

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Display the figure
fig.show()

Some comments about the functions called above:

+ go.Figure: generates an empty Plotly figure

go.Scatter: generates the actual plot. By default a scatter plot is produced. To obtain linear interpo-
lation of the points, set mode = '1lines'. You can also label the plot with name = "string"

« add_trace: adds a plot to a figure

« show: displays a figure

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk


https://plotly.com/python/line-and-scatter/

Differential Geometry Page 319

As an example, let us plot the Fermat’s Spiral defined at 5.2. Compared to the above code, we also add a bit
of styling.

# Plotting Fermat's Spiral
# Import libraries

import numpy as np
import plotly.graph objects as go

+H

Compute times grid by dividing (0,50) in
500 equal parts
= np.linspace(0, 50, 500)

t 3+

+H

Computes Fermat's Spiral
= np.sqrt(t) * np.cos(t)
y = np.sqrt(t) * np.sin(t)

o

# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
data = go.Scatter(x = x, y =y, mode = 'lines', name = 'gamma')

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Here we start with the styling options
# First we set a figure title
fig.update_layout(title_text = "Plotting Fermat's Spiral with Plotly")

# Adjust figure size
fig.update_layout (autosize = False, width = 600, height = 600)

# Change background canvas color
fig.update_layout(paper_bgcolor = "snow"

# Axes styling: adding title and ticks positions
fig.update_layout(
xaxis=dict(
title text="X-axis Title",
titlefont=dict(size=20),
tickvals=[-6,-4,-2,0,2,4,6],
) s
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yaxis=dict(
title text="Y-axis Title",
titlefont=dict(size=20),
tickvals=[-6,-4,-2,0,2,4,6],
)

# Display the figure
fig.show()

Unable to display output for mime type(s): text/html
Unable to display output for mime type(s): text/html

The above code generates an image that cannot be rendered in pdf. To see the output, please click here for the
digital version of these notes. Note that the style customizations could be listed in a single call of the function
update_layout. There are also pretty buit-in themes available, see here. The layout can be specified with
the command

fig.update_layout(template = template_name)

where template_name can be "plotly", "plotly_white", "plotly_dark", "ggplot2", "seaborn",
"simple_white®

5.1.4.2 3D Plots

We now want to plot a 3D curvey : (a,b) — R> parametrized by

y(®) = (x(@), y(®), 2(t)) .

Again we use the Plotly module graph_objects, imported as go. The function for 3D line plots is called
Scatter3d, and documentation and examples can be found at link. The code for plotting y is as follows.

# Plotting gamma 3D
# Import libraries
import numpy as np

import plotly.graph objects as go

# Compute times grid by dividing (a,b) in
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+H

n equal parts
= np.linspace(a, b, n)

—«+

Compute the parametric curve gamma
for given functions x(t), y(t), z(t)
= x(t)

= y(t)

= z(t)

N < X H

# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
data = go.Scatter3d(x = x, y =y, z = z, mode = 'lines', name = 'gamma')

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Display the figure
fig.show()

The functions go.Figure, add_trace and show appearing above are described in the previous Section. The
new addition is go.Scatter3d, which generates a 3D scatter plot of the points stored in the array [x,y,z].
Setting mode = 'lines' results in a linear interpolation of such points. As before, the curve can be labeled
by setting name = "string".

As an example, we plot the 3D Helix defined at 5.3. We also add some styling. We can also use the same pre-
defined templates descirbed for go.Scatter in the previous section, see here for official documentation.

# Plotting 3D Helix
# Import libraries
import numpy as np

import plotly.graph objects as go

# Divides time interval (0,6pi) in 100 parts

t = np.linspace(0, 6*np.pi, 100)
# Computes Helix

X = np.cos(t)

y = np.sin(t)

z =t
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# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
# We add options for the line width and color
data = go.Scatter3d(

X =X,y =Y, 2 =2,

mode = 'lines', name = 'gamma',
line = dict(width = 10, color = "darkblue")
)

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Here we start with the styling options
# First we set a figure title
fig.update_layout(title_text = "Plotting 3D Helix with Plotly")

# Adjust figure size
fig.update_layout(
autosize = False,

width = 600,
height = 600
)

# Set pre-defined template
fig.update_layout(template = "seaborn")

# Options for curve line style

# Display the figure
fig.show()

Unable to display output for mime type(s): text/html

The above code generates an image that cannot be rendered in pdf. To see the output, please click here for
the digital version of these notes. Once again, the style customizations could be listed in a single call of the
function update_layout.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk


https://www.silviofanzon.com/2023-Differential-Geometry-Notes/sections/appendix_1.html#sec-plot-3d-curves-interactive

Differential Geometry Page 323

5.2 Surfaces in Python

5.2.1 Plots with Matplotlib

I will take for granted all the commands explained in Section 5.1. Suppose we want to plot a surface S which
is defined by the parametric equations

x=x(uw,v), y=ywv), z=zwv)

for u € (a,b) and v € (c,d). This can be done via the function called plot_surface contained in the mplot3d
Toolkit. This function works as follows: first we generate a mesh-grid [U, V] from the coordinates (u, v) via
the command

[U, V] = np.meshgrid(u, v)

Then we compute the parametric surface on the mesh

x = x (U, V)
y =y (U, V)
z =z (U, V)

Finally we can plot the surface with the command

plt.plot_surface(x, y, z)

The complete code looks as follows.

# Plotting surface S

# Importing numpy, matplotlib and mplot3d
import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

# Generates figure object of size m x n
fig = plt.figure(figsize = (m,n))

# Generates 3D axes
ax = plt.axes(projection = '3d')

# Shows axes grid
ax.grid(True)
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# Generates coordinates u and v

# by dividing the interval (a,b) in n parts
# and the interval (c,d) in m parts

u = np.linspace(a, b, m)

v = np.linspace(c, d, n)

# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)

# Computes S given the functions x, y, z
# on the grid [U,V]

x = x(U,V)
y = y(U,V)
z = z(U,V)

# Plots the surface S
ax.plot_surface(x, y, z)

# Setting plot title
ax.set_title('The surface S')

# Setting axes labels

ax.set_xlabel('x', labelpad=10)
ax.set_ylabel('y', labelpad=10)
ax.set_zlabel('z', labelpad=10)

# Setting viewing angle
ax.view_init(elev = e, azim = a)

# Showing the plot

plt.show()

For example let us plot a cone described parametrically by:
x=ucos(v), y=usin(v), z=u

for u € (0,1) and v € (0, 27r). We adapt the above code:

# Plotting a cone

# Importing numpy, matplotlib and mplot3d

import numpy as np
import matplotlib.pyplot as plt
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from mpl_toolkits import mplot3d

# Generates figure object of size 4 x 4
fig = plt.figure(figsize = (4,4))

# Generates 3D axes
ax = plt.axes(projection = '3d')

# Shows axes grid
ax.grid(True)

Generates coordinates u and v by dividing
the intervals (0,1) and (0,2pi) in 100 parts
= np.linspace(0, 1, 100)

= np.linspace(0, 2*np.pi, 100)

< £ HH =

+H

Generates grid [U,V] from the coordinates u, v
V = np.meshgrid(u, v)

=

Computes the surface on grid [U,V]
U * np.cos(V)

U * np.sin(V)

=U

N < X **
Il

# Plots the cone
ax.plot_surface(x, y, z)

# Setting plot title
ax.set_title('Plot of a cone')

# Setting axes labels

ax.set_xlabel('x', labelpad=10)
ax.set_ylabel('y', labelpad=10)
ax.set_zlabel('z', labelpad=10)

# Setting viewing angle
ax.view_init(elev = 25, azim = 45)

# Showing the plot
plt.show()
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Plot of a cone

As discussed in Section 5.1, we can have multiple plots in the same figure. For example let us plot the torus

viewed from 2 angles. The parametric equations are:

x = (R + rcos(u)) cos(v)
y = (R +rcos(u)) sin(v)

z = rsin(u)

for u,v € (0, 27) and with

« R distance from the center of the tube to the center of the torus

« r radius of the tube

# Plotting torus seen from 2 angles

# Importing numpy, matplotlib and mplot3d
import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

# Generates figure object of size 9 x 5
fig = plt.figure(figsize = (9,5))

# Generates 2 sets of 3D axes
ax1l = fig.add_subplot(1l, 2, 1, projection
ax2 = fig.add_subplot(1l, 2, 2, projection

VSdI)
|3dl)
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# Shows axes grid
ax1l.grid(True)
ax2.grid(True)

Generates coordinates u and v by dividing
the interval (0,2pi) in 100 parts

= np.linspace(0, 2*np.pi, 100)

= np.linspace(0, 2*np.pi, 100)

< £ HH =

=

Generates grid [U,V] from the coordinates u, v
V = np.meshgrid(u, v)

=

Computes the torus on grid [U,V]
with radii r = 1 and R = 2

H X

o

= (R + 1 * np.cos(U)) * np.cos(V)
y = (R+ r * np.cos(U)) * np.sin(V)
z = r * np.sin(U)

# Plots the torus on both axes
axl.plot_surface(x, y, z, rstride = 5, cstride = 5, color = 'dimgray', edgecolors =
o 'snow')

ax2.plot_surface(x, y, z, rstride = 5, cstride
o 'snow')

5, color = 'dimgray', edgecolors =

# Setting plot titles
axl.set_title('Torus"')
ax2.set_title('Torus from above')

# Setting range for z axis in axl
axl.set_zlim(-3,3)

# Setting viewing angles
axl.view_init(elev = 35, azim = 45)
ax2.view_init(elev = 90, azim = 0)

# Showing the plot
plt.show()
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Torus Torus from above

-3-2-10 1 2 3}}7@-@

Notice that we have added some customization to the plot_surface command. Namely, we have set the
color of the figure with color = 'dimgray' and of the edges with edgecolors = 'snow'. Moreover the
commands rstride and cstride set the number of wires you see in the plot. More precisely, they set by how
much the data in the mesh [U, V] is downsampled in each direction, where rstride sets the row direction, and
cstride sets the column direction. On the torus this is a bit difficult to visualize, due to the fact that [U, V]
represents angular coordinates. To appreciate the effect, we can plot for example the paraboiloid

foru,v € [—1,1].
# Showing the effect of rstride and cstride

# Importing numpy, matplotlib and mplot3d
import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

# Generates figure object of size 6 x 6
fig = plt.figure(figsize = (6,6))

# Generates 2 sets of 3D axes
axl = fig.add_subplot(2, 2, 1, projection = '3d'")
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ax2 = fig.add_subplot(2, 2, 2, projection = '3d'")
ax3 = fig.add_subplot(2, 2, 3, projection = '3d'")
ax4 = fig.add_subplot(2, 2, 4, projection = '3d")

# Generates coordinates u and v by dividing
# the interval (-1,1) in 100 parts

u = np.linspace(-1, 1, 100)

v = np.linspace(-1, 1, 100)

# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)

# Computes the paraboloid on grid [U,V]

X =U
y =V
Z = - Uk%2 - V&2

# Plots the paraboloid on the 4 axes
# but with different stride settings

axl.plot_surface(x, y, z, rstride = 5, cstride = 5, color = 'dimgray', edgecolors =

o 'snow')

ax2.plot_surface(x, y, z, rstride = 5, cstride = 20, color = 'dimgray', edgecolors =
o 'snow')

ax3.plot_surface(x, y, z, rstride = 20, cstride = 5, color = 'dimgray', edgecolors =
o 'snow')

ax4.plot_surface(x, y, z, rstride = 10, cstride = 10, color = 'dimgray',6 edgecolors =

o 'snow')

# Setting plot titles
axl.set_title('rstride = 5, cstride = 5'")
ax2.set_title('rstride = 5, cstride = 20')
ax3.set_title('rstride = 20, cstride = 5'")
ax4.set_title('rstride = 10, cstride = 10'")

# We do not plot axes, to get cleaner pictures
axl.axis('off"')
ax2.axis('off")
ax3.axis('off"')
ax4.axis('off"')

# Showing the plot
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plt.show()

rstride = 5, cstride =5 rstride = 5, cstride = 20

rstride = 20, cstride =5 rstride = 10, cstride = 10

.

iy

/ s
l i
//// /

In this case our mesh is 100 x 100, since u and v both have 100 components. Therefore setting rstride and
cstride to 5implies that each row and column of the mesh is sampled one time every 5 elements, for a total

of

i

100/5 = 20

samples in each direction. This is why in the first picture you see a 20 x 20 grid. If instead one sets rstride
and cstride to 10, then each row and column of the mesh is sampled one time every 10 elements, for a total
of

100/10 = 10

samples in each direction. This is why in the fourth figure you see a 10x10 grid.

5.2.2 Plots with Plotly

As done in Section 5.1.4, we now see how to use Plotly to generate an interactive 3D plot of a surface. This
can be done by means of functions contained in the Plot1ly module graph_objects, usually imported as go.
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Specifically, we will use the function go.Surface. The code will look similar to the one used to plot surfaces
with matplotlib:

« generate meshgrid on which to compute the parametric surface,
« store such surface in the numpy array [x,y,z],
« pass the array [x,y,z] to go.Surface to produce the plot.

The full code is below.

# Plotting a Torus with Plotly

# Import "numpy" and the "graph_objects" module from Plotly
import numpy as np
import plotly.graph_objects as go

Generates coordinates u and v by dividing
the interval (0,2pi) in 100 parts

= np.linspace(0, 2+*np.pi, 100)

= np.linspace(0, 2*np.pi, 100)

< £ H =

=

Generates grid [U,V] from the coordinates u, v
V = np.meshgrid(u, v)

=

Computes the torus on grid [U,V]
with radii r = 1 and R = 2

H X

o

= (R + 1 * np.cos(U)) * np.cos(V)
y = (R + r * np.cos(U)) * np.sin(V)
z = 1 * np.sin(U)

# Generate and empty figure object with Plotly
# and saves it to the variable called "fig"
fig = go.Figure()

# Plot the torus with go.Surface and store it
# in the variable "data". We also do now show the
# plot scale, and set the color map to "teal"
data = go.Surface(

X=X ,Y =Y, Z =2,

showscale = False,

colorscale="teal'

)
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# Add the plot stored in "data" to the figure "fig"
# This is done with the command add_trace
fig.add_trace(data)

# Set the title of the figure in "fig"
fig.update_layout(title_text="Plotting a Torus with Plotly")

# Show the figure
fig.show()

Unable to display output for mime type(s): text/html

The above code generates an image that cannot be rendered in pdf. To see the output, see the link to the digital
version of these notes. To further customize your plots, you can check out the documentation of go.Surface
at this link. For example, note that we have set the colormap to teal: for all the pretty colorscales available
in Plotly, see this page.

One could go even fancier and use the tri-surf plotsin Plotly. This is done with the function create_trisurf
contained in the module figure_factory of Plotly, usually imported as ff. The documentation can be
found here. We also need to import the Python library scipy, which we use to generate a Delaunay triangu-
lation for our plot. Let us for example plot the torus.

# Plotting Torus with tri-surf

# Importing libraries

import numpy as np

import plotly.figure factory as ff
from scipy.spatial import Delaunay

# Generates coordinates u and v by dividing
# the interval (0,2pi) in 100 parts

u = np.linspace(0, 2*np.pi, 20)

v = np.linspace(0, 2*np.pi, 20)

# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)

# Collapse meshes to 1D array

# This is needed for create_trisurf
U = U.flatten()

V = V.flatten()

# Computes the torus on grid [U,V]
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# with radii r = 1 and R = 2

x = (R + 1 * np.cos(U)) * np.cos(V)
y = (R+ r * np.cos(U)) * np.sin(V)
z = r * np.sin(U)

# Generate Delaunay triangulation
points2D = np.vstack([U,V]).T

tri = Delaunay(points2D)
simplices = tri.simplices

# Plot the Torus

fig = ff.create_trisurf(
X=X, Y=y, Z=Z,
colormap = "Portland",
simplices=simplices,
title="Torus with tri-surf",
aspectratio=dict(x=1, y=1, z=0.3),
show_colorbar = False

)

# Adjust figure size
fig.update_layout(autosize = False, width = 700, height = 700)

# Show the figure
fig.show()

Unable to display output for mime type(s): text/html

Again, the above code generates an image that cannot be rendered in pdf. To see the output, see the link to
the digital version of these notes.
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